EEL814 — Microeletronical — 2° Semestre/2019 — DEL/UFRJ
Prof. Antonio Petraglia

Second-Order Analog Filters Having Truly
Independent Tunability of Center
Frequency and Bandwidth

A. Petraglia

Universidade Federal do Rio de Janeiro
EPOLI/PEE/COPPE



Introduction

* In many integrated system applications, 1t and 2"%-order sections are
required for higher order filter designs;

 Analog filter realization featuring independently tunable center frequency (w,)
and 3-dB bandwidth (a@,) was up to recently missing;

« Consequences:
— Changes of @, also affects @, , and vice-versa;
— The solution is the tuning of 2 or more components (usually C’s and R’s);

— The cost is the increase of structure complexity, and consequently of
silicon area;



Introduction

 Independent tunability of @, and @, allows simple circuitry to program these
two parameters, which leads to area reduction;

* In the analog domain, switched-capacitor (SC) techniques are particularly
suitable:
(i) their transfer functions are expressed in the z-domain;

(i) filter coefficients can be accurately implemented by capacitance ratios;

« Several strategies for 2"d-order SC filter realizations have been reported;

» Techniques to improve the accuracy of the filter coefficients are advanced.



Introduction

Realization of half and integer delays and multipliers
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Discrete-Time Allpass Filters

1st-order allpass transfer function:
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1st-order structurally allpass transfer function:
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Discrete-Time Allpass Filters

Alternative 1st-order structurally allpass transfer function using a lattice
structure:
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Discrete-Time Allpass Filters

Alternative 1st-order structurally allpass transfer function using a lattice
structure:
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Discrete-Time Allpass Filters

2nd-order structurally allpass section implemented as a series connection
of two 18t-order allpass lattice networks:
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Analog Discrete-Time Second-Order Allpass Filters

2nd-order structurally allpass section implemented as a series connection
of two 18t-order allpass lattice networks:
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« o establishes the rate with which the fase of A(el®) crosses
-180°, and hence determines the 3-dB bandwidth: @, = cos (205/(1"'052))

« [Bdetermines the frequency at -180°: @ = cos™! (,B)



Analog Discrete-Time Second-Order Allpass Filters

Central frequency fixed at @, =0.3337 (8 =0.5).

Phase (Degrees)
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* o establishes the rate with which the fase of A(el®) crosses -180°
and hence determines the 3-dB bandwidth: @, =cos™ (2a/ (1+a?))

 As aincreases the filter bandwidth becomes narrower.



Analog Discrete-Time Second-Order Allpass Filters

Fase rate fixed at w,=0.2057 (o =0.5).
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« [ determines the center frequency, that is, the frequency at which
-1
the phase is -180°: @Wo = €08 (8)



Analog Discrete-Time Second-Order Allpass Filters

By adding or subtracting the input and the output of the allpass section,
either a bandstop or bandpass filter, respectively, is obtained:
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SC Real

Structurally allpass lattice SC filter




Circuit Simulations

Independent control of bandwidth () for a fixed central frequency (£ =0.5)
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SC Realization

Structurally allpass lattice SC filter
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Circuit Simulations

Independent control of central frequency (/) for a fixed bandwidth (a=0.9)
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Comparisons

Proposed Fleischer & Laker

Center Frequency Tuning

8 z‘:;‘.l slelelo|lele | w0 |2 |r]|L E‘:;l
095 02 15575 1 1 156 1 005 2 2 1 1 00250256 43564
095 05 6290 1 1 0975 1 005 2 2 1 1 00250256 412.24
095 07 4521 1 1 058 1 005 2 2 1 1 00250256 396.64
095 09 3539 1 1 0195 1 005 2 2 1 1 00250256 381.04

Bandwidth Tuning

02 05 6140 1 1 06 1 08 2 2 1 1 040 0265 43.19
05 05 6200 1 1 075 1 05 2 2 1 1 0250265 43.02
07 05 6240 1 1 08 1 03 2 2 1 1 015 0265 70.73
09 05 6280 1 1 095 1 01 2 2 1 1 005 0265 207.12

Fleischer & Laker approach requires large capacitances for center frequency tuning, large capacitance

spread (62.4) and simultaneous adjustments on 3 capacitances C, E and K for bandwidth tuning.



Frequency Response Sentitivity to & and

Relative error in the magnitude frequency response caused by simultaneous
variations of ¢ and  can be expressed as:
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We assume the capacitance ratios have relative errors
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Frequency Response Sentitivity to & and

Bandpass Filter
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Frequency Response Sentitivity to & and

Bandstop Filter
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Improving Filter Coefficient Accuracy

Techniques to improve capacitance ratio accuracy

JL | IR BB R A unicapaitos

C=100fF
A =5um x Sum

 Careful routing inside the capacitor array to avoid crossover and crosstalk,
and therefore parasitic capacitances as well;

« Arrangement of unit capacitors in common centroid layout to reduce
capacitance mismatch;



Improving Filter Coefficient Accuracy

crossover
capacitances

crosstalk
capacitances




Improving Filter Coefficient Accuracy

Parasitic capacitances

Crosstalk and crossover



Improving Filter Coefficient Accuracy

Small capacitors:
« The actual capacitance ratio can be significantly different from unity.
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Large capacitors:

« Better ratio accuracy;

« However, if the plates are too large: (i) chip area may be excessive;
(i) opposite regions of the two capacitors may be affected differently by the
fabrication process (e.g., slight difference in oxide thickness t,);
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Capacitance Ratio Error Sources

Systematic error caused by overetching

« It occurs when the upper layer of polysilicon or metal is being etched;

» The relative area errors of two capacitors will be the same if their nominal
perimeter/area ratio is the same;

» Therefore the capacitance ratio will not be affected.
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Capacitance Ratio Error Sources

Overetching effects
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Improving Filter Coefficient Accuracy

Symmetrical layout with common centroid - evaluation of the average
capacitance of each capacitor, assuming a linear model for t_, variation:
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Capacitor Layout

Asymmetrical layout with common centroid:
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Capacitor Layout

Arrangement of unit capacitors to reduce capacitance mismatch

« Common centroid arrangement is not a simple task when the number of
capacitance ratios (i.e. coefficients) is large;

« Common centroid layout is not always possible;
* When possible, there are several alternatives;

* A choice can thus be made to avoid or reduce crossover and crosstalk
parasitic capacitances.

« Common centroid layout tends to increase the spatial correlation coefficients
of the capacitors;

» Find the optimal arrangement that minimizes the common centroid error and
maximizes the spatial correlation.



Conclusions

« A new approach for the design of 2"-order bandpass and bandstop SC filters
was presented;

» The center frequency and 3-dB bandwidth are tuned independently by only two
capacitance ratios, thereby reducing capacitance spread, circuit area and power
consumption;

» The circuit core is a structurally allpass SC filter, and therefore regardless of
coefficient error realizations the allpass transfer function property is preserved;

* Frequency response sensitivity to coefficient errors is thus reduced;

A sensitivity analysis was conducted to verify the low frequency response
variations with respect to capacitance ratio errors, for both bandpass and
bandstop filters;

» Arrangements of unit capacitors to reduce capacitance mismatch were shown.
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