Second-Order Analog Filters Having Truly Independent Tunability of Center Frequency and Bandwidth

A. Petraglia Universidade Federal do Rio de Janeiro EPOLI/PEE/COPPE

Introduction

- In many integrated system applications, 1st and 2nd-order sections are required for higher order filter designs;
- Analog filter realization featuring independently tunable center frequency (ω_o) and 3-dB bandwidth (ω_b) was up to recently missing;
- Consequences:
 - Changes of ω_o also affects ω_b , and vice-versa;
 - The solution is the tuning of 2 or more components (usually C's and R's);
 - The cost is the increase of structure complexity, and consequently of silicon area;

Introduction

- Independent tunability of ω_o and ω_b allows simple circuitry to program these two parameters, which leads to area reduction;
- In the analog domain, switched-capacitor (SC) techniques are particularly suitable:

(i) their transfer functions are expressed in the z-domain;

- (ii) filter coefficients can be accurately implemented by capacitance ratios;
- Several strategies for 2nd-order SC filter realizations have been reported;
- Techniques to improve the accuracy of the filter coefficients are advanced.

Introduction

Realization of half and integer delays and multipliers

Discrete-Time Allpass Filters

1st-order allpass transfer function:

1st-order *structurally* allpass transfer function:

Alternative 1st-order structurally allpass transfer function using a lattice structure:

$$G(z) = \frac{V_{out}}{V_{in}}(z) = \frac{\alpha + z^{-1}}{1 + \alpha z^{-1}}$$

Discrete-Time Allpass Filters

Alternative 1st-order structurally allpass transfer function using a lattice structure:

$H(z) = \frac{V_{out}(z)}{V_{out}(z)}$	$-\beta + z^{-1}$			
$\frac{II(2) - V_{in}}{V_{in}}$	$1-\beta z^{-1}$			

2nd-order structurally allpass section implemented as a series connection of two 1st-order allpass lattice networks:

$A(z) = \frac{V_{out}}{V_{in}}(z) =$	$H(z)z^{-1}+\alpha$
	$1+\alpha H(z)z^{-1}$

2nd-order structurally allpass section implemented as a series connection of two 1st-order allpass lattice networks:

- α establishes the rate with which the fase of $A(e^{j\omega})$ crosses -180°, and hence determines the 3-dB bandwidth: $\omega_b = \cos^{-1}(2\alpha/(1+\alpha^2))$
- β determines the frequency at -180°: $\omega_0 = \cos^{-1}(\beta)$

Central frequency fixed at $\omega_0 = 0.333 \pi$ ($\beta = 0.5$).

- α establishes the rate with which the fase of $A(e^{j\omega})$ crosses -180° and hence determines the 3-dB bandwidth: $\omega_b = \cos^{-1}(2\alpha/(1+\alpha^2))$
- As α increases the filter bandwidth becomes narrower.

Fase rate fixed at $\omega_b = 0.205\pi$ ($\alpha = 0.5$).

• β determines the center frequency, that is, the frequency at which the phase is -180°: $\omega_0 = \cos^{-1}(\beta)$

By adding or subtracting the input and the output of the allpass section, either a bandstop or bandpass filter, respectively, is obtained:

SC Realization

Circuit Simulations

Independent control of bandwidth (α) for a fixed central frequency ($\beta = 0.5$)

SC Realization

Adder

Subtractor

Circuit Simulations

Independent control of central frequency (β) for a fixed bandwidth ($\alpha = 0.9$)

Comparisons

Proposed			Fleischer & Laker											
Center Frequency Tuning														
α	β	Total Cap.	A	B	С	D	E	G	H	Ι	J	K	L	Total Cap.
0.95	0.2	155.75	1	1	1.56	1	0.05	2	2	1	1	0.025	0.256	435.64
0.95	0.5	62.90	1	1	0.975	1	0.05	2	2	1	1	0.025	0.256	412.24
0.95	0.7	45.21	1	1	0.585	1	0.05	2	2	1	1	0.025	0.256	396.64
0.95	0.9	35.39	1	1	0.195	1	0.05	2	2	1	1	0.025	0.256	381.04
Bandwidth Tuning														
0.2	0.5	61.40	1	1	0.6	1	0.8	2	2	1	1	0.40	0.265	43.19
0.5	0.5	62.00	1	1	0.75	1	0.5	2	2	1	1	0.25	0.265	43.02
0.7	0.5	62.40	1	1	0.85	1	0.3	2	2	1	1	0.15	0.265	70.73
0.9	0.5	62.80	1	1	0.95	1	0.1	2	2	1	1	0.05	0.265	207.12

Fleischer & Laker approach requires large capacitances for center frequency tuning, large capacitance spread (62.4) and simultaneous adjustments on 3 capacitances C, E and K for bandwidth tuning.

Frequency Response Sentitivity to α and β

Relative error in the magnitude frequency response caused by simultaneous variations of α and β can be expressed as:

$$\frac{\Delta |H(\omega)|}{|H(\omega)|} = \frac{\Delta \alpha}{\alpha} S_{\alpha}^{|H(\omega)|} + \frac{\Delta \beta}{\beta} S_{\beta}^{|H(\omega)|}$$

where

$$S_x^{|H(\omega)|} = \frac{x}{|H(\omega)|} \frac{\partial |H(\omega)|}{\partial x}$$

We assume the capacitance ratios have relative errors

$$\frac{\Delta\alpha}{\alpha} = \frac{\Delta\beta}{\beta} = \varepsilon = 1\%$$

Frequency Response Sentitivity to α and β

Bandpass Filter

$$\frac{\Delta |H_{BP}(\omega)|}{|H_{BP}(\omega)|} = \frac{\left(\frac{-2\alpha}{1-\alpha^2}(\cos \omega - \beta) + \beta\right)(\cos \omega - \beta)}{(\cos \omega - \beta)^2 + \left(\frac{1-\alpha}{1+\alpha}\sin \omega\right)^2} \cdot \varepsilon$$

$$\int_{am}^{0.06} \int_{am}^{0.02} \int_{am}^{0$$

Frequency Response Sentitivity to α and β

Bandstop Filter

Techniques to improve capacitance ratio accuracy

<u>Unit capacitors:</u> C = 100 fF A = 5μm x 5μm

- Careful routing inside the capacitor array to avoid crossover and crosstalk, and therefore parasitic capacitances as well;
- Arrangement of unit capacitors in common centroid layout to reduce capacitance mismatch;

crossover capacitances

crosstalk capacitances

Parasitic capacitances

Crosstalk and crossover

Small capacitors:

• The actual capacitance ratio can be significantly different from unity.

Large capacitors:

- Better ratio accuracy;
- However, if the plates are too large: (i) chip area may be excessive;
 (ii) opposite regions of the two capacitors may be affected differently by the fabrication process (e.g., slight difference in oxide thickness t_{ox});

Capacitance Ratio Error Sources

Systematic error caused by overetching

- It occurs when the upper layer of polysilicon or metal is being etched;
- The relative area errors of two capacitors will be the same if their nominal perimeter/area ratio is the same;
- Therefore the capacitance ratio will not be affected.

Capacitance Ratio Error Sources

Overetching effects

X2

 A_2

 $\Delta l \rightarrow$

The relative area error is

$$\frac{\Delta A_1}{A_1} = -\frac{P_1 \Delta l}{A_1}$$

The real capacitance ratio is

$$\frac{C'_{1}}{C'_{2}} = \frac{A'_{1}}{A'_{2}} = \frac{A_{1}\left(1 - \frac{P_{1}\Delta l}{A_{1}}\right)}{A_{2}\left(1 - \frac{P_{2}\Delta l}{A_{2}}\right)}$$

Therefore, if

then

$$\frac{\frac{r_1}{A_1}}{\frac{C'_1}{C'_2}} = \frac{\frac{r_2}{A_2}}{\frac{C_1}{C_2}}$$

 \boldsymbol{D}_{-}

D.

Symmetrical layout with common centroid - evaluation of the average capacitance of each capacitor, assuming a linear model for t_{ox} variation:

Capacitor Layout

Asymmetrical layout with common centroid:

Capacitor Layout

Arrangement of unit capacitors to reduce capacitance mismatch

- Common centroid arrangement is not a simple task when the number of capacitance ratios (i.e. coefficients) is large;
- Common centroid layout is not always possible;
- When possible, there are several alternatives;
- A choice can thus be made to avoid or reduce crossover and crosstalk parasitic capacitances.
- Common centroid layout tends to increase the spatial correlation coefficients of the capacitors;
- Find the optimal arrangement that minimizes the common centroid error and maximizes the spatial correlation.

Conclusions

- A new approach for the design of 2nd-order bandpass and bandstop SC filters was presented;
- The center frequency and 3-dB bandwidth are tuned independently by only two capacitance ratios, thereby reducing capacitance spread, circuit area and power consumption;
- The circuit core is a structurally allpass SC filter, and therefore regardless of coefficient error realizations the allpass transfer function property is preserved;
- Frequency response sensitivity to coefficient errors is thus reduced;
- A sensitivity analysis was conducted to verify the low frequency response variations with respect to capacitance ratio errors, for both bandpass and bandstop filters;
- Arrangements of unit capacitors to reduce capacitance mismatch were shown.

EEL814 – Microeletrônica I – 2º. Semestre/2019 – DEL/UFRJ Prof. Antonio Petraglia

