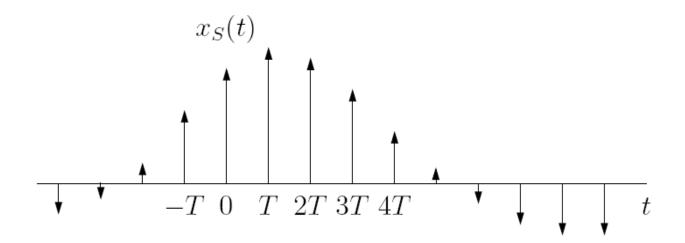


Qual é a relação entre as Transformadas de Fourier de $x_c(t)$ e x[n] ?

Modelo simples: amostragem impulsiva

$$x_C(t) \xrightarrow{} x_S(t)$$

$$\Delta(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$$



 $\Delta(t)$ pode ser expresso pela série de Fourier $\Delta(t)=\sum_{n=-\infty}c_ne^{j\frac{2\pi n}{T}t}$ cujos coeficientes são:

$$c_{n} = \frac{1}{T} \int_{-T/2}^{T/2} \Delta(t) e^{-j\frac{2\pi n}{T}t} dt$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} \sum_{k=-\infty}^{\infty} \delta(t-kT) e^{-j\frac{2\pi n}{T}t} dt$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-j\frac{2\pi n}{T}t} dt$$

$$= \frac{1}{T}$$

Portanto:
$$\Delta(t) = \frac{1}{T} \sum_{n=-\infty}^{\infty} e^{j\frac{2\pi n}{T}t}$$

Podemos então escrever:

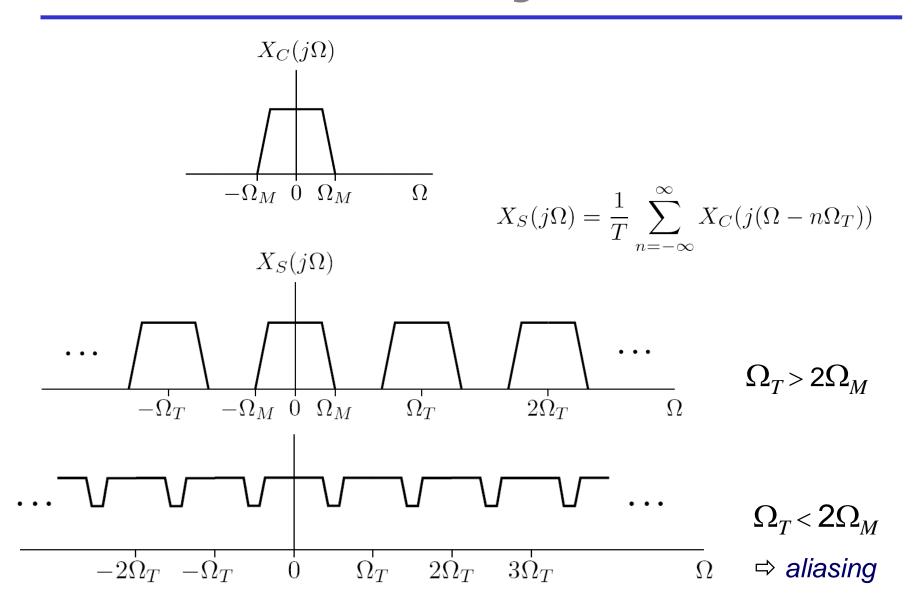
$$x_S(t) = x_C(t)\Delta(t)$$

$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} x_C(t)e^{j\frac{2\pi n}{T}t}$$

cuja Transformada de Fourier (CTFT) é:

$$X_S(j\Omega) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X_C(j(\Omega - n\Omega_T))$$

 $\Omega_T = 2\pi/T$ é a frequência de amostragem.



Algumas definições:

Taxa de Nyquist: $\Omega_T = 2\Omega_M$ (amostragem crítica)

Oversampling: $\Omega_T > 2\Omega_M$

Undersampling: $\Omega_T < 2\Omega_M$

Relação entre $X_C(j\Omega)$ e $X(e^{j\omega})$:

$$x_S(t) = x_C(t)\Delta(t)$$

$$= \sum_{n=-\infty}^{\infty} x_C(nT)\delta(t - nT)$$

Aplicando a CTFT:

$$X_{S}(j\Omega) = \int_{-\infty}^{\infty} x_{S}(t)e^{-j\Omega t}dt$$

$$= \int_{-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} x_{C}(nT)\delta(t-nT)\right)e^{-j\Omega t}dt$$

$$= \sum_{n=-\infty}^{\infty} x[n] \int_{-\infty}^{\infty} \delta(t-nT)e^{-j\Omega t}dt$$

$$= \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega nT}$$

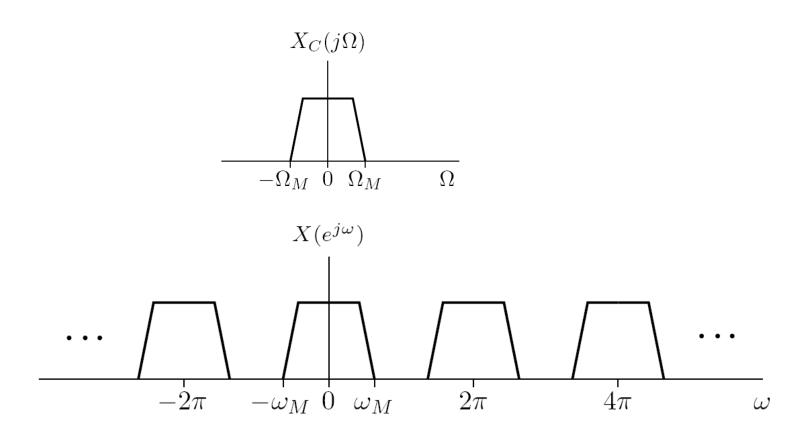
CTFT de
$$x_{\rm S}(t)$$
: $X_S(j\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega nT}$

DTFT de x[n]:
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Portanto:
$$X_S(j\Omega)=X(e^{j\Omega T})$$
 $\Rightarrow \overline{\omega=\Omega T}$ $X_S(j\omega/T)=X(e^{j\omega})$

Como
$$X_S(j\Omega) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X_C(j(\Omega - n\Omega_T))$$

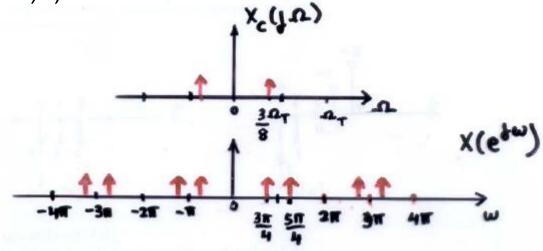
então, finalmente:
$$X(e^{j\omega})=\frac{1}{T}\sum_{n=-\infty}^{\infty}X_{C}\left(j\left(\frac{\omega-2\pi n}{T}\right)\right)$$



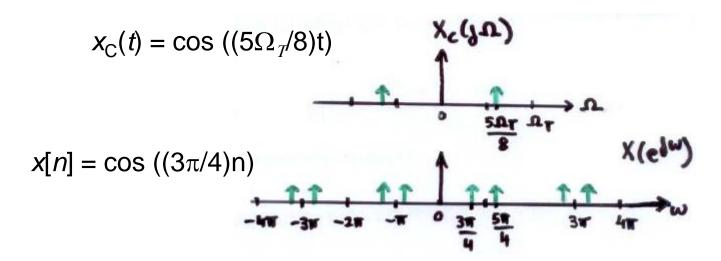
$$X(e^{j\omega}) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X_C \left(j \left(\frac{\omega - 2\pi n}{T} \right) \right)$$

$$x_{\rm C}(t) = \cos\left((3\Omega_{\rm T}/8)t\right)$$

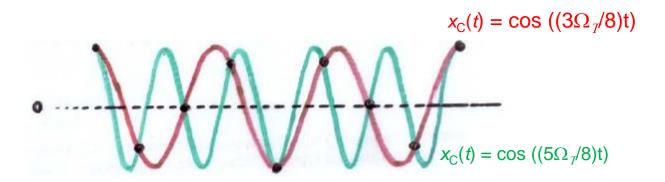
$$x[n] = \cos((3\pi/4)n)$$



$$X(e^{j\omega}) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X_C \left(j \left(\frac{\omega - 2\pi n}{T} \right) \right)$$



No domínio do tempo:



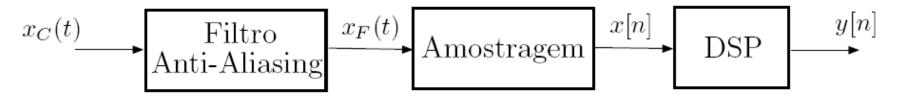
Teorema da Amostragem:

Um sinal contínuo $x_C(t)$ limitado em frequência, com $X_C(j\Omega) = 0$ para $|\Omega| > \Omega_M$, é unicamente determinado por suas amostras $x_C(nT)$ se

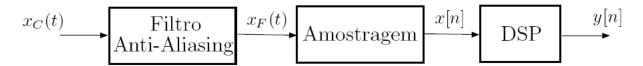
$$\Omega_T \geq 2\Omega_M$$

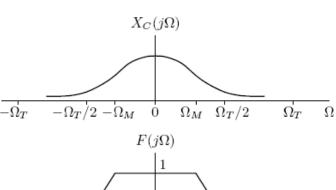
onde $\Omega_T = 2\pi/T$.

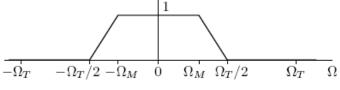
Geralmente o sinal de interesse possui energia espúria (ruído) em frequências elevadas ⇒ é necessário um filtro analógico para evitar aliasing.

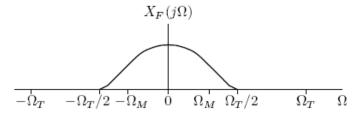


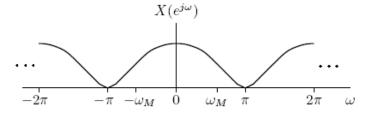
Filtragem Anti-aliasing











Recuperação do Sinal Analógico

Se a condição de Nyquist for satisfeita, o sinal contínuo $x_C(t)$ pode ser recuperado, passando-se o trem de impulsos $x_S(t)$ por um filtro passa-baixas analógico $H_r(j\Omega)$ com frequência de corte Ω_C tal que

$$\Omega_M < \Omega_C < (\Omega_T - \Omega_M)$$

ou seja:

$$H_r(j\Omega) = \begin{cases} T, |\Omega| \le \Omega_C \\ 0, |\Omega| > \Omega_C \end{cases}$$

A resposta ao impulso de $H_r(j\Omega)$ é:

$$h_r(t) = \frac{T}{2\pi} \int_{-\Omega_C}^{\Omega_C} e^{j\Omega t} d\Omega = \frac{sen(\Omega_C t)}{\Omega_T t/2}$$

Recuperação do Sinal Analógico

O trem de impulsos $x_S(t)$ é dado por

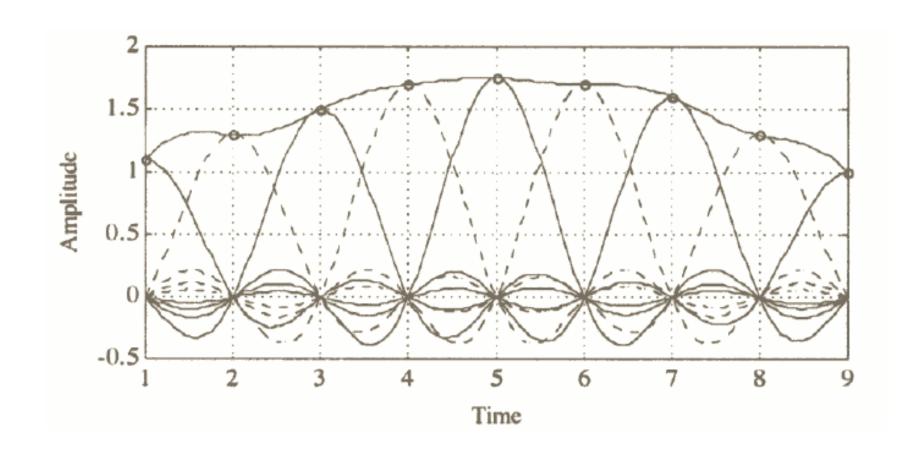
$$x_S(t) = \sum_{n = -\infty}^{\infty} x(n)\delta(t - nT)$$

Portanto, a saída do filtro $H_r(j\Omega)$ com entrada $x_S(t)$, assumindo $\Omega_C = \Omega_T/2 = \pi/T$, é:

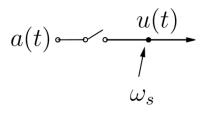
$$\hat{x}_C(t) = \sum_{n = -\infty}^{\infty} x(n) h_r(t - nT)$$

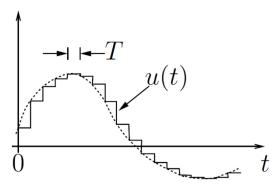
$$= \sum_{n = -\infty}^{\infty} x(n) \frac{sen(\pi(t - nT)/T)}{\pi(t - nT)/T}$$

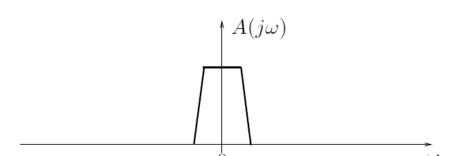
Recuperação do Sinal Analógico



Amostragem Sample-and-Hold



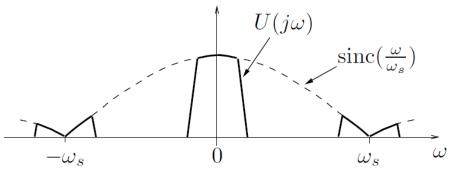




$$U(j\omega) = X(j\omega)S(j\omega)$$

$$X(j\omega) = \frac{\omega_s}{2\pi} \sum_{k=-\infty}^{\infty} A(j\omega - jk\omega_s)$$

$$S(j\omega) = \frac{2\pi}{\omega_s} \operatorname{sinc}\left(\frac{\omega}{\omega_s}\right) e^{-j\pi\omega/\omega_s}$$



EEL813 - Circ. Analog Integ. Proc. Sinais - 1º. Semestre/2020 - DEL/UFRJ Prof. Antonio Petraglia

