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Effects of Coefficient Inaccuracy in 
Swit ched-Capacitor Transversal Filters 

Antonio Petraglia and  Sanjit K. Mitra, Fellow, ZEEE 

Abstract -Coefficient inaccuracy effects in the frequency re- 
sponse of FIR switched-capacitor filters implemented in direct 
form are investigated. No assumption is made with respect to 
the filter coefficients, so that the results of the analysis are valid 
for both linear and nonlinear phase FIR filters. Assuming that 
the errors in the capacitor ratios realizing the tap coefficients 
are uncorrelated and have identical Gaussian distributions, an 
exact probability distribution function is derived for the error in 
the frequency response. It is shown that this distribution can be 
characterized by a Rayleigh distribution, which is then used to 
derive an upper bound for the expected stopband attenuation. 
Extensive simulation results are shown, as well, to give support 
to the analysis. 

I.  INTRODUCTION 
NALOG transversal filters have been implemented A in a number of technologies, including charge-cou- 

pled devices and charge-transfer devices. These tech- 
niques allow for the implementation of discrete-time 
transversal filters without the need for analog-to-digital 
converters. The availability of high-quality MOS capaci- 
tors and switches has made switchedAcapacitor (SC) net- 
works an increasingly attractive alternative, which is re- 
flected in many applications reported in the related 
literature [1]-[61. Also, a high-speed GaAs transversal 
filter has been proposed in [71, as a result of the growing 
interest in the use of this technology for implementing SC 
integrated filters. The structure of a transversal filter uses 
two basic building blocks: the unit-delay and the linear 
combiner, comprising the filter coefficients and the sum- 
mer. In order to minimize or eliminate errors such as 
offset voltage, stray capacitances, gain variations, and 
clock feedthrough, several circuit techniques have been 
proposed for the realization of high-quality SC unit-delays 
[8]-[12], which are cascaded to implement the analog 
delay line, and SC adders [lo], [13]-[151, which implement 
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the linear combiner. In this paper we assume that the 
errors mentioned above have negligible effects, so that 
the filter transfer function can be written as C:: ih ,~-~ ,  
where N is the filter length and h,  is the kth filter 
coefficient. Since these coefficients are implemented by 
capacitor ratios, their limited accuracy may be the most 
important cause of deviation from the desired frequency 
response of SC transversal filters.’ This is in contrast with 
the digital case where the filter-coefficients can be imple- 
mented with high precision by increasing the wordlength. 

The accuracy of the capacitor ratios is affected by 
several factors such as voltage and temperature depen- 
dencies, parasitic capacitances, and errors that are inher- 
ent to the fabrication process. Errors due to voltage and 
temperature variations are in general negligible and easily 
avoided with a careful layout arrangement. Parasitic ca- 
pacitances can be efficiently eliminated by properly de- 
signing the circuit so that all the capacitors connected to a 
virtual ground are switched to low impedance nodes hav- 
ing the same voltage as that of the virtual ground. The 
last type of error depends strongly on the process and the 
equipment used. For a typical MOS process, the global 
edge and oxide variations represent the crucial limitations 
on the achievable matching accuracy [16], [17]. It has been 
shown [lS] that the capacitor ratio errors may reasonably 
be modeled as uncorrelated and normally (Gaussian) dis- 
tributed random variables, having zero mean and stan- 
dard deviation that typically lies in the range of 0.001 to 
0.05 [19]. 

Although the capacitor ratio errors affect the frequency 
response of a transversal filter in all frequencies, it is in 
the stopband that their effect is more apparent. The 
reason for this is that in this region the desired magnitude 
is very small as a result of a very delicate combination of 
all the tap signals [22]. This is illustrated in Fig. 1 where 
we show the frequency responses of three FIR filters 
(broken lines) whose coefficients have additive Gaussian 
errors with zero mean and standard deviation uE = 0.001. 
The ideal frequency response obtained with “infinite” 
precision coefficients is also shown (solid line). Observe 
that although the desired stopband attenuation is 107 dB, 

‘This assumption may not be valid when N is very large. In such cases 
the accumulation of errors resulting from the signal being successively 
transferred from one stage to another of the delay line may not be 
tolerable. 
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an actual SC implementation with the state-of-the-art 
technology can only provide around 45 dB of attenuation. 

The issue of the coefficient inaccuracy effects in 
transversal filters has been studied by several authors in 
the past for both digital and analog transversal structures 
[20]-[27]. In [26], in particular, it is shown that for large 
N, the maximum error in the frequency response of the 
magnitude of a linear phase transversal filter is given by 
u d m ,  where U is the standard deviation of the 
coefficient errors. This result is based on the assumption 
that the coefficient errors are independent identically 
distributed random variables with a zero mean and finite 
sixth-order moment. This result has been found to be 
moderately accurate in one study [27] of a low-pass filter 
with N = 33. 

In this paper we investigate coefficient inaccuracy ef- 
fects in the frequency response of SC transversal filters. 
We assume that the coefficient errors are independent 
and identically distributed Gaussian random variables, 
and derive an exact probability distribution function (pdf) 
for the error in the frequency domain. Since no particular 
assumption is made regarding the filter coefficients, the 
analysis is valid for both linear and nonlinear phase FIR 
filters. 

11. STATISTICAL ANALYSIS 

We begin our approach by writing the actual filter 
transfer function, on the unit circle, as 

N-1 

H ( w )  = (hk  + Ek)eiok 
k = O  

N-1  

= H ( w )  + Ekejok (1) 
k = O  

where ek is a random error and represents the capaci- 
tance ratio fluctuation around the nominal value of the 
kth coefficient h,. From the last equality we define the 

error transfer function as 

A H (  U )  = H (  0) - H (  0) 

N-1 

= Ekejok (2) 

(3) 

k = O  

which can be rewritten as 

A H (  w )  = A( w )  + jB( w )  

where 
N - l  N-1  

~ ( w ) =  E ~ C O S ( W ~ ) ,  ~ ( w ) =  Eksin(wk). 
k = O  k = O  

(4) 

Assuming that the ratio errors Ek are uncorrelated Gauss- 
ian random variables and identically distributed with zero 
mean and standard deviation U,, we have 

N-1  N - l  

U:(@) = E { A 2 ( w ) ) =  E(EkEI}COS(wk)COS(Wf) 
k = O  I = O  

i sin (( 2 N - 1) o) 
= < ( 2 N + l +  4 sin w 

N-1  N-1  

u , 2 ( w )  = E ( B ~ ( ~ ) ) =  E{EkEl}sin(wk)sin(wf) 
k = O  1=0 

i sin((2N-1)w) = 2 ( 2 N - I -  U, 

4 sin w 

and 

Y ( W )  = E I A W B ( 4 1  
N-1 N-1  

= E{ E k E l }  cos ( w k )  sin ( wZ) 
k = O  I = O  

U: COS w + COS (( 2 N - l ) ~ )  
(7) - _  - 

4 sin w 

where E( e }  denotes expectation. For a given frequency w ,  
both A ( @ )  and B ( w )  are zero mean Gaussian random 
variables, and therefore, they have a well-known joint pdf, 
which is given by 

(8) 

where 

x'( w )  = [ A (  w ) ,  B( o)] and C (  o) = E{x(  w ) x T (  w ) )  

and IC(w)l is the determinant of the matrix C ( w ) .  Notice 
that the above pdf is, as expected, frequency dependent, 
which means that the error introduced in the filter trans- 
fer function by mismatches in the capacitor ratios varies 
with frequency. 

In much of the following work it is convenient to 
introduce another pair of random variables R ( w )  and 
@(U) ,  which are the magnitude and phase of the error 

(9) 
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transfer function, respectively, at the frequency w ,  i.e., 

R( w )  = \ / ~ ~ ( w )  + ~ ' ( w )  , ~ ( w )  = arctan 

(10) 

Now defining, 

COS( ( N  - 1 ) ~ )  
K (  W )  = and u ' ( w )  = IN2 - . ' ( U ) [  

sin w 

(11) 

we have the following identities from (51, (61, and (7): 

U:( w )  + U;( w )  = Nu: ( 12) 

4 1 ~ 3  w ) u ~ (  W )  - r2( w)I  = U,".'( W )  (13) 

( u , Z ( w ) - u , Z ( w ) ) c o s 2 ~ + 2 y ( w ) s i n 2 ~  

= a?.( w )  sin (20 + N o )  (14) 
where 0 is an arbitrary angle. Using these identities we 
can write the joint pdf of R ( w )  and O ( w )  as 

.exp [ r 2 K ( w )  sin(20 + N U )  

a?u2( w )  

Notice that, for simplicity of notation, we omitted the 
frequency dependence in r and 6, as we do in the 
following equations. Now the pdf of the magnitude of the 
error transfer function can be obtained as follows: 

where Z&.) is the modified Bessel function of zero order.2 
Given the standard deviation U, of the capacitance ratios 
used to implement an SC transversal filter of length N ,  
then the probability that the error transfer function has, 
at the frequency w ,  a magnitude r l  <IAH(w) l<r , ,  is 
given by the area under f,(.) in the range from r l  to r2 .  

We now turn our attention to the argument of I, ,  in 
(16). First from (11) we observe that for a given filter of 
length N there exists a set R, = ( w I , w 2 )  such that3 

K ~ ( w ) < N ,  and v ( w ) ' = N 2 ,  V~ER,.  (17) 

As a consequence, 

Substituting (17) and (18) in (161, we conclude that 

which is a Rayleigh distribution with mean and standard 
deviation given, respectively, by 

U,. (20) 
m dFm p r = y u ,  and U,= 

2 
Equation (19) shows that lAH(w)l  has a distribution that 
is approximately independent of frequency for all fre- 
quencies in R,.4 In fact, as depicted in Fig. 2 for N = 8, 
the pdf given by (16) is approximately frequency indepen- 
dent for all frequencies in the set R, = (0.05, 0.45). In 
Fig. 3, the exact pdf in (16) and the Rayleigh pdf in (19) 
are shown for the frequencies w = 0.016 and w = 0.3. 
Observe that for frequencies outside Cl,, the pdf tilts to 
the left, indicating a decrease in the mean value. This has 
been verified by computer simulations whose results we 
present later. 

From the well-known inequality for complex numbers 
we can write 

I f i ( w ) I ~ l H ( w ) l + I A H ( w ) I  (21) 
so that taking the expected value from both sides we 
obtain 

E { l f i ( w ) l } < E { I H ( w ) l )  + E { I A H ( w ) l ) .  (22) 
Assuming that (19) is valid for all frequencies, i.e., Cl ,  = 
R, (see footnote 21, and substituting (20) in (22) we get 

This equation shows how the expected value of the trans- 
fer function magnitude of the transversal filter is influ- 
enced by the error in its coefficients. In the passband the 
nominal magnitude of the frequency response is approxi- 
mately one, and since U, is typically small ( -  0.001) the 
filter length N has to be large before any influence is 
noticed. In fact, for IH (w) l=  1 and U, = 0.001 the two 
terms on the right-hand side of (23) have approximately 
the same value when N - lo6. Based on this observation 
we neglect coefficient inaccuracy effects in the passband 
and focus our discussion on the stopband range of fre- 
quencies, where (23) can be rewritten as 

~ 

\lTN 
E { I A ( w ) l }  < 6, + T U , .  

An ideal filter would have 6, = 6, = Af = 0. In practice, 
however, one may have the passband ripple 6, and the 
transition band A f fixed for a particular application and 
may have to choose the filter length N in order to achieve 
a desired stopband attenuation. If U, = 0, meaning that 
there is no coefficient error, then I f i ( w ) l =  S,, and the 
stopband amplitude can be made as small as desired by 

'Also the phase has an approximately frequency independent distribu- 
tion, more specifically a uniform distribution with pdf fo(t9)= 1/27~, 
0 E [0,27rI. 
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increasing N.  In the presence of coefficient errors, on the 
other hand, increasing the filter length does not lead to a 
decrease of the stopband ripple as an increase of degra- 
dation in the stopband frequency response also takes 
place, as indicated by (24). In other words, for a given 
coefficient accuracy, the larger the number of tap coeffi- 
cients the lower the probability of obtaining the desired 
attenuation, since all the tap signals have to be precisely 
combined in order to produce a very small signal as an 
output; Even for moderate values of N the actual magni- 
tude 6, may be far away from the nominal value a,, 
specially when this is required to be very small. In this 
case the actual magnitude is expected to be limited by the 

error term, i.e., 

477 N E(IB( 0)l) = 7 a,, if S , < y a , .  (25) 
L L 

Observe that the analysis presented in this section is 
valid for both linear and nonlinear phase FIR filters 
implemented in direct form. Since nonlinear phase FIR 
filters meet a given magnitude response specification with 
filter length smaller than that of linear phase FIR filters 
[24], [25], (25) shows that nonlinear phase filter implemen- 
tations are less affected by random errors in the filter 
coefficients. (For a discussion on how much the filter 
length can be reduced by giving up the phase linearity, 
see [241.) 

111. SIMULATION RESULTS AND DISCUSSION 
Extensive simulations have been carried out to verify 

the analysis described in the last section. In all cases the 
filter coefficients of the ideal filter have been obtained 
with the well-known McClellan-Parks algorithm [291. 
However, since our analysis is not restricted to the linear 
phase FIR transfer functions, it is assumed that the actual 
implementation does not exploit the symmetry in the 
filter coefficients. 

For the frequency responses in Fig. 1, for example, we 
have N = 50,6, = 4.467 X lop6 ( -  107 dB), and a, = 0.001. 
In this case we obtain E{lAH(w)l} = 6.267X which is 
much larger than 6,. This result means that with a very 
high probability, an SC transversal filter of length N = 50 
is not able to achieve the desired stopband atteFuation. 
Observe that for this example, (25) gives E{IH(w)b= 
E{IAH(w)l} = -44 dB, which is in accordance with the 
frequency responses in Fig. 1. To verify the accuracy of 
these results we computed the average of the frequency 

Publicity Chairman: 
nr Hnri P Ra.l.4.. 
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Fig. 4. Average amplitude computed over 10000 filters with specifica- 
tions as given in Fig. 1. Observe that in accordance with (24), E{IH(w)l) 
< - 44 dB in the stopband. 

response amplitudes of 10000 samples of FIR filters 
( N  = 50, 6,  = 0.0122, and A f = 0.08) with Gaussian coef- 
ficient errors having ue = 0.001. The results are displayed 
in Fig. 4. Notice the perfect agreement between the 
predicted stopband attenuation ( - 44 dB, as calculated 
above) and the computed values, including the extreme 
frequencies, in which case the average values are a bit 
lower. This, as mentioned previously, would have been 
indicated by the more accurate pdf in (16). Fig. 4 also 
shows that, in accordance with (241, E(lH(w) l )  G -44 dB 
in the stopband. 

Equation (24) gives the upper bound 

m 
4 = 6 , + -  (26) 2 

for the expected value of the actual magnitude of H ( w )  in 
the stopband. Following an approach by Gersho et al. 
[26], we use the empirical formulas given in [28] relating 
6, to 6,, Af and N .  Now the upper bound 4 can be 
plotted as a function of N for particular values of 6 , ,  A f ,  
and U€. Fig. 5 shows (solid lines) upper bounds obtained 
for 6, = 0.0122, ue = 0.001 and three different values of 
A f :  0.01, 0.02, and 0.08. These plots are similar in form to 
the ones reported in [26], except there the plots are upper 
bounds for the maximum amplitude of the error transfer 
function. Also shown in Fig. 5 (broken lines) are the 
amplitudes that would be obtained in the ideal case (if 
the coefficients were implemented with infinite accuracy). 
These curves clearly indicate the values of N beyond 
which the effect of coefficient inaccuracy becomes the 
dominant factor in determining the stopband amplitude. 
Let us consider, for instance, the curve corresponding to 
Af = 0.08. We can see that for N < 30, the inaccuracy 
effect is not obvious since both the ideal and upper bound 
curves coincide. For N > 30, on the other hand, the 
inaccuracy effect dominates and the expected amplitude 
is as given by (25). The minimum point occurs for N = 36, 
which is the filter length that is expected to provide the 
best stopband attenuation (-45.15 dB) when 6 ,  = 0.0122, 

20 

15 

10 

5 

0 " " " " " " " "  
0 100 200 300 

Filter Length (N) 

Fig. 6 .  Simulation results obtained from 10000 FIR filters to verify the 
expressions given in (20). 

A f  = 0.08, and ue = 0.001. Observe that for each filter 
with length N > 36 there is always another filter with 
smaller length ( N  < 36) that provides at least the same 
stopband attenuation. So, for example, a transversal filter 
of length N=60 ,  which ideally is supposedAto provide 
6, = - 138.6 dB, would actually be limited to 6, = -43.27 
dB. Then the same performance (-43.52 dB) could be 
obtained with another filter satisfying the same specifica- 
tions and using only N = 29 coefficients. 

To verify the validity of (19) as an approximation for 
the exact expression in (16) 10 000 samples of transversal 
filters with U, = 0.001 have been generated, from which 
both the average and standard deviation of IAH(w>l  have 
been computed at w = 0.3. The ideal prototype FIR fil- 
ters with 6,  = 0.0122, A f  = 0.01, 0.02, and 0.08, and 
several values of N ,  have been designed using the 
McClellan-Parks algorithm [29]. Fig. 6 shows plots of 
p / u e  and ur/ue given in (20) together with values ob- 
tained by simulation. Again, the excellent agreement be- 
tween the predicted and the simulated results is observed. 
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Since the pdf of the error transfer function is known, it 
is possible to obtain the probability of havi?g the stop- 
band amplitude larger than a certain level 6, > 6,. This 
can be used to define the ideal filter specifications in 
order to guarantee, with a certain probability, that tke 
stopband attenuation never crosses a predefined level 6,. 
These aspects are investigated in the following section. 

IV. FILTER DESIGN CONSIDERATIONS 
As we have seen from the previous section, the random 

errors in the filter coefficients cause the actual amplitude 
in the stopband to be higher than the ideal value 6,. Let 
us then suppose that we want to obtain the probability of 
kaving the stopband amplitude larger than a certain level 
6, > 6,. Then from (21) we have, in the stopband, 

expected magnitude of the error transfer function is 
E{lA(w)l} = - 41.4 dB, which is comparable to the Pesired 
stopband amplitude. Using (28) we obtain Pr{lH(o)l& 
- 35 dB} < 0.518, and from (29) it follows that it is neces- 
sary to have a,,,, = 3.78 X lop4 to stay below - 35 dB in 
the stopband with a probability of more than 99%. 

V. CONCLUDING REMARKS 
An analysis of the distortion introduced by capacitance 

ratio inaccuracies in the frequency response of FIR SC 
filter implemented in direct form has been presented. 
Assuming that the coefficient errors have identical Gauss- 
ian distribution, an exact pdf has been derived for the 
error in the frequency response. It has been shown that 
this distribution can be characterized by a Rayleigh distri- 
bution, which has been used to derive an upper bound for 
the expected stopband attenuation. The results of the 
analysis can be used to predict, for a given implementa- 
tion technology for which the capacitance ratio accuracy 
is known, the achievable stopband attenuation. Simula- 
tion results have been shown to support the analysis. 

P r { l A ( w ) l ~ ~ 2 } ~ P r { 6 2 + I A H ( w ) l ~ ~ ~ }  

= Pr { l A H ( w ) l  3, - 6 2 } .  (27) 

Finally, using (19), we obtain 

P ~ { I A ( ~ ) I > ~ , I < J ~  f R ( r ) d r  
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