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Fundamental Frequency Response Bounds of
Direct-Form Recursive Switched-Capacitor Filters

with Capacitance Mismatch
Antonio Petraglia, Senior Member, IEEE

Abstract—A theoretical statistical analysis is developed to in-
vestigate the effects of random capacitance matching errors in the
frequency response of recursive switched-capacitor filters imple-
mented in direct form. As a result, with appropriate approxima-
tions, closed-form solutions for the mean and the standard devia-
tion of the frequency response error are derived. The obtained ex-
pressions provide insight into the quantitative influence of capac-
itance ratio tolerance, numerator and denominator orders, pass-
band and stopband ripples, and edge frequencies, and reveal ex-
isting tradeoffs among these parameters, so that the most efficient
filter design can be found. The main theoretical results are exten-
sively verified by simulation through Monte Carlo analysis to show
the effectiveness of the proposed formulas.

Index Terms—Capacitance mismatch, direct form, statistical
sensitivity analysis, switched-capacitor filters, yield estimation.

I. INTRODUCTION

T HERE exists a variety of recursive (IIR) switched-capac-
itor (SC) filter structures, each having particular virtues

and limitations. The direct-form realizations are deemed to
have, in some situations, a distinctive edge over other imple-
mentations. The large number of high-quality SC delay lines
presented in the literature, e.g., [1]–[4], makes it possible for
a SC recursive filter to be efficiently implemented by two
SC arrays—one in the forward path realizing the numerator
coefficients and the other in the feedback path realizing the
denominator coefficients—sharing one SC delay line, as
illustrated in Fig. 1(a) [5]–[7]. The use of two (or more) SC
delay lines, as shown in Fig. 1(b), has also been reported, e.g.,
to reduce total capacitance [8], to design structurally all-pass
SC filters for low sensitivity realization of a transfer function
[9], [10], and to implement SC decimation filters [11]. An ap-
proach employing a smaller number of operational amplifiers,
multiplexed in time, has been recently described [12]. These
direct-form structures offer a number of additional attractive
features to the analog sampled-data designer, such as savings
in power consumption and silicon area, facility for time-mul-
tiplexing common filter sections among several signals [13],
and rejection of MOS amplifier noise and power-supply noise
below the Nyquist frequency [6], [14].
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Fig. 1. Basic structures of recursive SC filters in direct form. (a) Using one
delay line shared by two (forward and feedback) SC arrays. (b) Using two
(forward and feedback) SC delay lines.

The disadvantage of direct realizations, opposed to other im-
plementations, becomes clear in narrow-band filtering applica-
tions, where most of the poles are clustered near the unit circle.
Then, the frequency response degradation due to the accumula-
tion of pole deviations caused by coefficient errors can become
quite large. Because of this pole-dependent coefficient sensi-
tivity, direct realizations of recursive SC filters have their ac-
curacy in the frequency response limited by capacitance ratio
errors, as their coefficients depend on the matching character-
istics of capacitor arrays. Other important nonideal factors in-
clude capacitive parasitics, switch charge injection, and finite
operational amplifier gain and bandwidth, but their effects are
less dependent of the filter structure. Moreover, these can be re-
duced by several techniques widely reported in the literature. As
device dimensions continue to be scaled down, however, capaci-
tance matching becomes increasingly difficult, leading to distor-
tions in the frequency response. In a typical MOS process, edge
uncertainties and oxide thickness variations introduce random
errors affecting capacitance ratios that cannot be corrected by
matching techniques [15]. These random errors, therefore, may
be responsible for the ultimate limitation on the performance
of direct-form recursive SC filters. One of the purposes of this
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paper is to access the consequent degradation in the frequency
response.

Deterministic analysis, based on the computation of deriva-
tives of the filter transfer function with respect to capacitance
ratios, can be used to estimate the mean and the standard devi-
ation of the frequency response error [16], [17]. More accurate
estimates may be obtained by computer-aided simulations using
Monte Carlo methods, but these approaches only enable the de-
signer to estimate the frequency response deviation of a given
design, and consequently do not provide dynamic insight into
the quantitative influence of parameters such as numerator and
denominator orders, passband and stopband ripples, edge fre-
quencies, and capacitance ratio tolerances.

In this paper, the effects of random capacitance ratio errors are
formulated as a statistical problem, as in Monte Carlo methods,
but are studied analytically, leading to closed-form expressions
for the mean and the standard deviation estimates of the error in
the frequency response. As shown by several illustrative exam-
ples, these estimates agree very closely with those provided by
Monte Carlo simulations. As a result, the boundaries of the fea-
sible frequency responses for a given nominal design and capac-
itance ratio tolerances are described mathematically, enabling
yield estimation without any need for computer simulations. Be-
sides establishing fundamental performance bounds, this paper
indicates how the derived expressions can be used, along with
an algorithm for the optimum design of recursive transfer func-
tions [18], to find the most efficient filter solution in the sense
that minimum (not necessarily equal) number of poles and zeros
and maximum yield can be achieved. Also shown in this paper,
when relatively large stopband attenuation is required, low sen-
sitivity can be obtained in both passband and stopband by using
a recursive SC structure implemented by lower order (typically
second-order) nonrecursive [finite-impulse response (FIR)] SC
sections [12].

This paper is outlined as follows. Mathematical models for
random capacitance ratio errors are discussed in Section II. The
estimates for the mean and the standard deviation of the error
in the frequency response of nonrecursive SC filters are briefly
reviewed in Section III. The statistical analysis of recursive SC
filters is then developed in Section IV, where the resulting the-
oretical estimates are compared to their respective Monte Carlo
estimates for a variety of transfer functions. Also verified in
Section IV is the accuracy of the improved capacitance ratio
error model proposed in Section II. An estimate for the achiev-
able stopband attenuation is derived in Section V. Frequency re-
sponse boundaries are derived in Section VI for yield evalua-
tion and comparison. Concluding remarks are presented in Sec-
tion VII.

II. CAPACITANCE RATIO ERROR MODELING FOR

STATISTICAL ANALYSIS

Various error mechanisms affecting MOS capacitances, for
different working conditions, have been studied. Capacitance
matching precision depends on the fabrication technology and

is limited by systematic and random errors. The former can
be significantly reduced by applying some proper layout tech-
niques [19]. By using two arrays of unit capacitances inter-
leaved in a common centroid geometry layout, for example,
the resulting capacitance ratio accuracy is typically about 0.5%,
and accuracies better than 0.1% have been experimentally ob-
tained for actual integrated circuit implementations [19], [20].
The remaining uncertainty is mainly due to random variations of
the manufacturing process and cannot be reduced by improved
layout rules.

Random errors in capacitance ratios have been modeled as
additive Gaussian random variables having zero mean and a
standard deviation that depends on the nominal ratio value
[20]–[22]. Accordingly, a mathematical model commonly used
in computer-aided analysis of SC filters [16] to statistically
describe random capacitance ratio errors is ,
where , are capacitance ratios, and theare
uncorrelated zero-mean Gaussian random variables. If the filter
coefficients are realized by arrays of unit capacitances, then
are rational numbers and are unit capacitance ratio errors.

Alternative models have been used with the purpose of ob-
taining a mathematically tractable problem that can be solved in
closed form. In [23], the model has been consid-
ered in the analysis of random coefficient error effects in the fre-
quency response of transversal filters realized by bucket brigade
delay lines, where is the maximum coefficient value. The
model , similar to the digital filter case except that
are Gaussian random variables, has been used to investigate co-
efficient inaccuracy effects in SC transversal filters [24]. This
model is also adequate for other analog signal-processing tech-
niques [25], as, for example, the interesting design scheme pro-
posed in [26], where each transfer function coefficient is given
in terms of a pulsewidth only. In this case, coefficient inaccura-
cies are caused by rise- and fall-time errors and are, therefore,
independent of the nominal pulse duration time.

In this paper, we adopt the model [27], where
is the arithmetic mean of the absolute values of the filter coef-
ficients, that is, . This takes into account the
fact that usually, as the filter length increases, the spread in the
tap weight values and, consequently, in the capacitance ratios,
becomes larger. Monte Carlo sensitivity analyses of SC filters
having Gaussian random errors in their coefficients have shown
(see Section IV) that is a very good approximation to the
more accurate model .

A. Notation and Preliminary Assumptions

The mean and the standard deviation of a frequency-depen-
dent random variable, say, , are here denoted as and

, respectively. For simplicity of presentation, the anal-
ysis is developed for low-pass filters; it can be easily extended
to other types of filter specifications. For the transfer function

of a low-pass filter with ideal components evaluated on
the unit circle, it is assumed that for
all frequencies in the passband, given by , and
that for all frequencies in the stopband, given by

, where and .
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Fig. 2. Example of a SC realization of (1). Clock phases (not shown) depend
on the signs of the corresponding coefficientsg .

III. N ONRECURSIVESC FILTERS

The frequency response of a nonrecursive SC filter of length
can be written as

(1)

It is assumed that each coefficient (or tap weight)
, is implemented as a ratio

between two capacitances, as in the transversal structure of
Fig. 2, or in other realizations using multiplexed op-amps [2].
In Fig. 2, the negative coefficients are realized by a proper
choice of the corresponding switch clock phases (omitted for
generality). Due to random capacitance errors introduced by the
manufacturing process, the actual transfer function becomes

(2)

where is the error associated with the nominal value of the
th capacitance ratio . Thus, the deviation in the frequency

response is

(3)

In [24], the analysis was carried out by substituting
in (3), where , , were assumed

uncorrelated Gaussian random variable having zero mean and
standard deviation . As stated in the previous section, here
we use , where is the arithmetic
mean of the capacitance ratios realizing the filter coefficients.
Following the analysis in [24], it can be shown that
can be accurately modeled by a Rayleigh random variable with
a mean value

(4)

and a standard deviation

(5)

where .

IV. STATISTICAL ANALYSIS OF RECURSIVESC FILTERS

Equations (4) and (5) provide a quantitative way of evalu-
ating the effects of random capacitance errors on the frequency
response of SC nonrecursive filters and indicate that the mean
and the standard deviation of are approximately inde-
pendent of the frequency. Distortions in the frequency response
of recursive SC filters, on the other hand, are further aggravated
by the fact that inaccuracies in pole locations are more critical
than in zero locations. In particular, the pole closest to the unit
circle exerts major influence in the region around the passband
edge frequency, augmenting the deviation in the passband and
reducing the attenuation in the stopband. How large the number
of poles and zeros can be chosen before the frequency response
reaches a prohibited level of distortion is one of the answers pro-
vided by the following analysis.

The transfer function of a recursive SC filter, evaluated on the
unit circle, can be written as

(6)

where

and

(7)

Let and be random errors representing fluctuations
around the nominal values of and , respectively. Then the
poles and the zeros of the actual transfer function will differ
from the desired poles and zeros, leading to a deviation
in the frequency response. The actual transfer function can thus
be written as

(8)

where

and

(9)

After multiplying both the numerator and denominator of (8) by
, and neglecting the terms and

, the deviation in the frequency response of
the recursive filter can be approximated as

(10)

Since and are deviations in the frequency re-
sponses of transversal filters with lengths and , re-
spectively, then according to (4)

and

(11)

where , , and and are the arithmetic mean
values of the capacitance ratios implementing the coefficients

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Downloaded on July 1, 2009 at 08:06 from IEEE Xplore.  Restrictions apply.



PETRAGLIA: DIRECT-FORM RECURSIVE SC FILTERS 343

of the respective transversal filters, that is,
and .

Before turning to the derivation of the mean and standard de-
viation of , we note that and assume values with
the same order of magnitude, and in most cases . Also,
the transfer function coefficients are scaled in such a way that
in the passband and the independent term of
is equal to one. Thus, for transfer functions with poles suffi-
ciently close to the unit circle, we have (see examples
in Sections IV-A and V-A), and consequently, it follows from
(11) that , . As a result, the ex-
pected value of the magnitude of the deviation in the frequency
response of for frequencies in the passband is, from (10)

(12)

For frequencies in the stopband, , so that

(13)

where we have also assumed that (see
examples in Sections IV-A and V-A).

Similarly, using (5), we obtain for the standard deviation of
in the passband

(14)

and in the stopband

(15)

The above formulas can be used to access the statistical varia-
tion in the particular frequency response of choice, by evaluating
them at each frequency of interest. This is shown in Sections V
and VI. They are next compared to their respective Monte Carlo
estimates considering two capacitance ratio error models dis-
cussed in Section II and three different filter specifications to
verify the effectiveness of the theoretical statistical analysis.

A. Monte Carlo Simulations

Monte Carlo estimates have been obtained by computing, at
each given frequency , the sample mean

(16)

and the sample standard deviation

(17)

of the error in the frequency responses of samples
of SC filters , , having Gaussian dis-

Fig. 3. Theoretical (solid lines) and Monte Carlo (“?” and “�”) estimates for
(a) the mean and (b) standard deviation ofj�H(!)j for the fifth-order elliptic
filter of Example 1. Ideal frequency response shows passband and stopband.

tributed capacitance ratio errors with zero mean and unit stan-
dard deviation . The Monte Carlo estimates (16)
and (17) for, respectively, the mean and the standard deviation
of have been compared to their corresponding the-
oretical estimates in (12)–(15). Some illustrative examples are
presented next. In all plots, solid lines correspond to the theo-
retical expressions in (12)–(15). Results of Monte Carlo simula-
tions are indicated by “” for the capacitance ratio error model

used in the theoretical analysis and by “” for the
more realistic model . The latter is included with the
purpose of verifying the accuracy of the model used in the the-
oretical analysis. The ideal frequency response, in dotted lines,
corresponds to a transfer function without coefficient errors and
is presented with the purpose of showing passband and stopband
frequency regions.

Example 1: As a first example, we consider a fifth-order
( ) elliptic SC filter, having normalized ( 2 ) edge
frequencies at and and ripples
and [18]. In this case, and

, giving and . The
results are displayed in Fig. 3(a) for the mean and in Fig. 3(b)
for the standard deviation, respectively, of . Notice the

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Downloaded on July 1, 2009 at 08:06 from IEEE Xplore.  Restrictions apply.



344 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 4, APRIL 2001

Fig. 4. Theoretical (solid lines) and Monte Carlo (“?” and “�”) estimates for
(a) the mean and (b) standard deviation ofj�H(!)j for the thirteenth-order
Chebyshev filter of Example 2. Ideal frequency response shows passband and
stopband.

perfect agreement between both models (“” and “ ”) and be-
tween the theory and the Monte Carlo simulations.

Example 2: A thirteenth-order ( ) type II
Chebyshev low-pass transfer function is considered next. The
main objective of this example is to show the very good accuracy
of the proposed theoretical analysis, even when applied to filters
with high-order transfer functions and large capacitance spread.
The magnitude of the ideal frequency response satisfies the fol-
lowing parameters: , , ,
and . Here we have and ,
thus and . The results are
shown in Fig. 4(a) and (b). Observe that the theoretical estimates
agree perfectly with those obtained by Monte Carlo simulations
for the model , verifying the proposed statistical anal-
ysis. The small difference between the curves “” and “ ” is due
to the large capacitance spread in this case.

Example 3: As a final illustrative example, a transfer func-
tion having numerator and denominator polynomials with dif-
ferent orders ( and ) is considered. The nominal
values of the filter coefficients have been obtained by using the
algorithm described in [18], satisfying the specifications

Fig. 5. Theoretical (solid lines) and Monte Carlo (“?” and “�”) estimates for
(a) the mean and (b) standard deviation ofj�H(!)j for the filter of Example
3, which considers a transfer function with unequal numerator and denominator
orders. Ideal frequency response shows passband and stopband.

, , , and . For
this case, and , yielding
and . Again, as shown in Fig. 5(a) and (b),
theoretical results are in excellent agreement with Monte Carlo
simulations. Notice that in this example, , indicating
that the assumption , used in the derivation of (12), is a
sufficient but not necessary condition.

B. Probability Distribution Function of

Equations (12)–(15), the above examples, and more extensive
simulations have indicated that is, at each frequency

, a Rayleigh random variable that has a probability density
function given by

(18)

where

.
(19)
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Fig. 6. Histogram ofj�H(!)j evaluated at! = ! = 0:2 for 1000 filter
samples of Example 1. Broken line indicates the Rayleigh probability density
function given by (18).

Fig. 6 displays a histogram for at
obtained with 1000 Monte Carlo analyses of the fifth-order el-
liptic filter considered in Example 1. Also shown, in broken
lines, is the probability density function in (18), with

/ . Fig. 6 shows
that the theoretical density function (18) provides a good fit of
the one estimated by the Monte Carlo computations and will be
used in Section VI to obtain design yield.

V. ACHIEVABLE STOPBAND ATTENUATION

In the ideal case , but because of the random ca-
pacitance ratio errors, the actual magnitude at the stopband edge
frequency is expected to increase, that is,

. In some applications, such as in the design of SC decima-
tion filters [11], [28], this may lead to excessive aliasing distor-
tion. It is, therefore, of interest to evaluate the expected value
of . An upper bound for can be obtained by
writing initially, from the first equality in (8)

(20)

Now substituting (13) into (20), and using the identity
, yields

(21)

Expressing in terms of the other filter parameters (, ,
, and ), the upper bound can be plotted as a func-

tion of any of these parameters. Approximate expressions exist
for Butterworth, Chebyshev, and elliptic transfer functions [29],
[30], allowing closed analytical formulas for . The pro-
cedure is next illustrated for elliptic and Chebyshev filters.

Fig. 7 shows, in solid lines, upper bounds for the stopband
attenuation that would be obtained by direct-form SC elliptic
filters having , , , and two
different values of transition ratio : and

. These curves indicate that an increase in the filter

Fig. 7. Dotted lines: stopband amplitudes of ideal elliptic filters; solid lines:
upper bounds for stopband amplitudes of direct-form SC elliptic filters having
random capacitance ratio errors.

Fig. 8. Dotted lines: stopband amplitudes of ideal Chebyshev filters; solid
lines: upper bounds for stopband amplitudes of direct-form SC Chebyshev
filters having random capacitance ratio errors.

order ( ) may provide some compensation for the capac-
itance ratio error effects, although the price to be paid could
be quite high for the resulting benefits. For , for in-
stance, augmenting the filter order from 8 to 12 leads to an
increase of approximately 10 dB in the stopband attenuation,
while in the ideal case, shown with a dotted line, this improve-
ment is obtained by increasing the filter order by 1. In some
cases, increasing the filter order as an attempt to compensate
for the influence of the capacitance ratio errors may even de-
crease the stopband attenuation, since is directly propor-
tional to . This is illustrated in Fig. 8 for Chebyshev filters
with , , and transition ratios
and . Observe that in the presence of capacitance ratio
errors, direct-form SC Chebyshev filters with and
order greater than 10 should be avoided, since another Cheby-
shev filter can be found with smaller order that provides approx-
imately the same stopband attenuation. The attenuation of 40
dB, for instance, can be achieved with orders 9 and 14.
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TABLE I
THEORETICAL AND EXPERIMENTAL RESULTS FOR THEELLIPTIC FILTERS OFFIG. 4

TABLE II
THEORETICAL AND EXPERIMENTAL RESULTS FOR THECHEBYSHEV FILTERS OFFIG. 5

All results presented in Figs. 7 and 8 have been exper-
imentally verified by Monte Carlo simulations, which are
summarized in Tables I and II, where is as
defined in (16), and . Notice
the very close agreement between the theoretical estimate

and the corresponding Monte Carlo estimate
. Equally good results, not included in Tables I

and II, have been obtained for the standard deviation estimates
and .

A. An Estimate for the Stopband Attenuation

Tables I and II also show that (21) gives a tight
upper bound for the actual stopband attenuation, since

is very close to the Monte Carlo
estimate . Observe that as the filter order increases,
for a fixed transition ratio , the value of decreases to a point
where , which can then be used as an
estimate for the expected stopband attenuation, i.e.,

(22)

In such case, the stopband attenuation decreases 6 dB as(
) doubles. Returning to the Chebyshev filter of Example 2,

with , , , ,
and , we have .
Thus, according to (22), , showing
that instead of the desired stopband attenuation of 85 dB one
would obtain approximately 52.8 dB in an actual SC imple-
mentation. This is a reduction of 32.2 dB due to capacitance

mismatch alone. Therefore, using (22), we conclude that the
stopband attenuation could be corrected to the desired value by
reducing the standard deviation of the capacitance ratio errors
by a factor of approximately 64, that is,

. In fact, the Monte Carlo estimate in this case
gives dB. However, the required

is not realizable for SC filters in today’s integrated circuit
technology, whereas in digital filters this figure could be easily
achieved by implementing each filter coefficient with approx-
imately 16 bits. Alternatively, the performance of direct-form
SC filters can be improved in the stopband, as well as in the
passband, if one considers transfer functions with , as
shown next.

VI. OPTIMUM DESIGN AND YIELD CONSIDERATIONS

For a large class of sampled-data filters, such as the classical
Butterworth, Chebyshev, and elliptic filters, considered in the
previous section, the numerator and denominator polynomials
have the same order, that is, . There are some design
procedures, however, based on optimized positioning of poles
and zeros, that lead to polynomials with unequal orders [18]. As
shown next, they also offer the possibility of choosing numer-
ator and denominator orders in such a way that a small deviation
is obtained in the frequency response.

Usually, the frequency response deviation in the passband in-
creases as the denominator order increases, as indicated by (12)
and (14), since increases and decreases for ,
because the distance from the poles to the unit circle in the pass-
band is less thanone.Exceptions may occur for wide-band fil-
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Fig. 9. Passband sensitivity characteristics of direct-form recursive SC filters with! = 0:2, ! = 0:3, � = 0:1087, and� < 0:001. (a)M = 5,N = 7;
(b)M = 6,N = 6; (c)M = 7,N = 5; (d)M = 9,N = 3. Dotted lines: ideal frequency response; solid lines: boundary curves� (�) and� (�).

ters. In this case, some inner poles of the classical elliptic ap-
proximation are so far from the unit circle that they can be
moved to the origin, almost without modifying the filter fre-
quency response, resulting in transfer functions with .
In [18], the transfer function sensitivities of digital filters have
been computed and compared for several values ofand
for a given specification. However, only the peak of the worst
case sensitivities for the poles closest to the unit circle have
been computed. A more comprehensive comparison is provided
below for SC filters.

A. Boundary Curves for the Feasible Frequency Responses

From (8), the following bounds can be written for the actual
transfer function

(23)

for all . On the other hand, using the probability density func-
tion given by (18), the probability that attains values
within a certain interval can be readily computed. In particular

(24)

where is a real positive number. Since for , the above
probability is equal to 0.995, it follows that with high probability

(25)

where

(26)
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TABLE III
FREQUENCYRESPONSEDEVIATION IN THE STOPBAND OFFILTERS WITH ! = 0:2, ! = 0:3, � = 0:1087, AND � < 0:001

and

(27)

Equations (26) and (27) determine, respectively, the lower and
upper boundary curves that enclose the feasible frequency re-
sponses. For in , for instance, (14) can be combined with
(26) and (27) to define the boundary responses in the passband.
In view of the accuracy of the theoretical analysis verified in
the previous sections, these boundaries provide quick and reli-
able yield evaluation at any particular frequency of interest, for a
specification window of acceptance defined in the frequency re-
sponse. The proportion of the feasible frequency responses that
pass this specification window test is the most commonly under-
stood meaning of design (or parametric) yield [31]. For detailed
treatment and formal definition of yield evaluation and estima-
tion, from the design stage to the integrated circuit production
cycle through final test, see, e.g., [17] and [32]. The following
example illustrates the procedure of finding an optimum design,
so that yield is maximized by comparing the boundary curves
obtained for each filter.

B. Illustrative Example and Discussion

Fig. 9 shows the boundary curves and in the pass-
band of four different designs: (a) , ; (b) ,

; (c) , ; and (d) , . In
all cases, , , ,
(passband ripple of 1 dB), and (stopband attenu-
ation of 60 dB) [18]. Each plot displays three curves: the ideal
frequency response in dotted lines and the boundary curves in
solid lines. Note that the decrease ofreduces the sensitivity in
the passband, as expected. At the passband edge frequency, for
example, and ,
for the fifth-order elliptic filter [ ; Fig. 9(b)], and

and ,
for the least sensitive filter [ , ; Fig. 9(d)]. How-
ever, the necessary increase ofto maintain high stopband at-
tenuation tends to increase the frequency response deviation in
the stopband, as indicated in (13) and (15). Moreover,
decreases in the stopband as the number of poles decreases,
since in this example the distance from most poles to the unit
circle region corresponding to stopband frequencies is greater
thanone.This is indicated by in Table III, as de-
creases from 7 to 3. Nevertheless, high stopband attenuation can
be achieved in all cases of the example. For the case ,

, the achievable stopband attenuation is expected to be,
from (21), about 59 dB.

The price for achieving the lowest passband sensitivity is a
longer delay line, since the fifth-order elliptic filter would re-

quire five unit delays, while the least sensitive one would require
eight unit delays to implement the forward path coefficients, as
indicated in Fig. 10(a). Alternatively, since in the latter case the
order of the numerator is four times the order of the denomi-
nator, five second-order FIR SC cells with almost identical di-
rect-form topologies can be used: four cascaded cells in the for-
ward path and one cell in the feedback path, as illustrated in
Fig. 10(b). The resulting structure shows a high degree of mod-
ularity and, hence, is attractive for VLSI implementation. More-
over, each FIR cell can be implemented by a single multiplexed
op-amp [3], [12]. It should also be observed that this structure
has the passband sensitivity of Fig. 9(d), since its poles are still
implemented in direct form, as shown in Fig. 10(b). Particular
circuit diagrams and specific practical design considerations are
beyond the scope of this paper and can be found elsewhere [12].

A linear phase FIR filter satisfying the above specifications
would require a delay line at least 21 units long. In some appli-
cations, where it is sufficient to approximate linear phase over a
fraction of the passband only [33], properly designed recursive
SC filters may replace with advantages a linear phase FIR SC
filter. Fig. 11 shows the group delays obtained for the filters con-
sidered in the above example. It can be observed that the filter
having , (in solid line) has an approximately con-
stant group delay in most of the passband, due to the fact that
it has only two poles, which are not as close to the unit circle
as the ones of the other filters. This comparative study suggests
that when exactly linear phase is not necessary, it may be more
efficient to implement a direct-form recursive SC filter with a
reduced number of poles than a linear phase FIR SC filter.

A link can also be established between the analysis pro-
posed in this paper and capacitance sizing so that capacitance
matching and noise can be optimized. Once the unit capacitance
ratio tolerance is obtained for a certain performance in the
passband, through (26) and (27), and in the stopband, through
(22), then the unit capacitor size can be defined according to the
uncertainty parameters specified by the process of fabrication.
Consequently, all other capacitor sizes, and noise generated by
them, can be determined by applying the corresponding scaling
factor. There exists a tradeoff, therefore, that determines an
upper bound for numerator and denominator orders, and a
lower bound for capacitor sizes, in the benefit of low sensitivity
and noise. Increasing capacitor dimensions, on the other hand,
also leads to higher power consumption, since the operational
amplifiers will have to drive larger capacitive loads.

VII. CONCLUDING REMARKS

This paper considered the effects of random capacitance ratio
errors in the frequency response of direct-form recursive SC
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Fig. 10. Two realizations of the least sensitive filter in Fig. 9(d). (a) Using two delay lines, as in Fig. 1(b). (b) Using second-order SC FIR cells as basic building
blocks.

Fig. 11. Group delay responses of the filters in Fig. 9.

filters, an issue of increasing importance in view of the trends
toward equipment miniaturization and consequent reduction in
process dimensions into the deep submicrometer range. As a
result of the statistical analysis, closed-form expressions for the
mean and the standard deviation of the error in the frequency re-
sponse were obtained. Extensive Monte Carlo simulations were
carried out to verify the main theoretical results and the model
used for random capacitance ratio errors.

An estimate for the stopband attenuation was derived, al-
lowing the designer to predict, for instance, the necessary ca-
pacitance ratio tolerance for a given filter to attain a specified
stopband attenuation. Several such estimates were presented for
elliptic and Chebyshev filters, showing, in particular, that while

in the ideal case an arbitrarily large stopband attenuation can
be achieved by simply augmenting the filter order, in a more
realistic situation, due to random capacitance ratio errors, an in-
crease in the filter order may even lead to a decrease in the stop-
band attenuation.

The obtained probability density function of the error in
the frequency response was used to evaluate the design yield.
Through an illustrative example, it was shown how this can be
incorporated into an efficient algorithm that considers transfer
functions with equal or unequal numerator and denominator
orders to design direct form recursive SC filters that simulta-
neously achieve low passband sensitivity and large stopband
attenuation.

This paper does not intend to suggest the recursive di-
rect-form structure as a solution for the general SC filter
design problem. However, by a judicious evaluation of the
revealed quantitative tradeoffs, allied to a simplicity of design
and layout implementation, this fundamental class of filters
can be considered as an alternative viable solution, and its
effectiveness can be maintained relative to more complex filter
structures in some interesting applications. Such is the essential
aim of this paper.

Although the main concern was with respect to SC filters, the
approach advanced here can be applied to any filter technique
in which coefficient errors have a Gaussian distribution, such as
those considered in Section II.
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