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Abstract—A theoretical statistical analysis is developed to in- SC Array >
vestigate the effects of random capacitance matching errors in the
frequency response of recursive switched-capacitor filters imple- ™M1 —"
mented in direct form. As a result, with appropriate approxima- },‘l. —
tions, closed-form solutions for the mean and the standard devia- SC Delay Line Vout
tion of the frequency response error are derived. The obtained ex- b
pressions provide insight into the quantitative influence of capac- - vy T v =
itance ratio tolerance, numerator and denominator orders, pass- P
band and stopband ripples, and edge frequencies, and reveal ex- - SC Array
isting tradeoffs among these parameters, so that the most efficient
filter design can be found. The main theoretical results are exten- @)
sively verified by simulation through Monte Carlo analysis to show
the effectiveness of the proposed formulas. nl o Delay Line

Index Terms—Capacitance mismatch, direct form, statistical
sensitivity analysis, switched-capacitor filters, yield estimation. vy ¥

SC Array Vout
. INTRODUCTION ".. 7 Il
HERE exists a variety of recursive (IIR) switched-capac- SC Delay Line [«

itor (SC) filter structures, each having particular virtues
and limitations. The direct-form realizations are deemed to b)
have, in some situations, a distinctive edge over other imple-
mentations. The large number of high-quality SC delay linggy. 1. Basic structures of recursive SC filters in direct form. (a) Using one
presented in the literature, e.g., [1]-[4], makes it possible fdelay line shared by two (forward and feedback) SC arrays. (b) Using two
a SC recursive filter to be efficiently implemented by twdforward and feedback) SC delay lines.
SC arrays—one in the forward path realizing the numerator ) ) o .
coefficients and the other in the feedback path realizing the The disadvantage of direct realizations, opposed to other im-
denominator coefficients—sharing one SC delay line, fementations, becomes clear in narrow-band filtering applica-
illustrated in Fig. 1(a) [5]-[7]. The use of two (or more) sdions, where most of the poles are clustered near the unit circle.
delay lines, as shown in Fig. 1(b), has also been reported, e'_l'd],en, the frequency response degradation due to the accumula-
to reduce total capacitance [8], to design structurally all-paign of pole deviations caused by coefficient errors can become
SC filters for low sensitivity realization of a transfer functiorfluite large. Because of this pole-dependent coefficient sensi-
[9], [10], and to implement SC decimation filters [11]. An apIivity, direct realizations of recursive SC filters have their ac-
proach employing a smaller number of operational amplifierduracy in the frequency response limited by capacitance ratio
multiplexed in time, has been recently described [12]. The§EOrS, as their coefficients depend on the matching character-
direct-form structures offer a number of additional attractitics of capacitor arrays. Other important nonideal factors in-
features to the analog sampled-data designer, such as savitgde gapacitive _p_arasitjcs, switch ch.arge injectio_n, and finite
in power Consumption and silicon area, fac|||w for time-mu|0perat|0nal ampllfler gain and bandWldth, but their effects are
tiplexing common filter sections among several signals [134Ess dependent of the filter structure. Moreover, these can be re-

and rejection of MOS amplifier noise and power-supply noisiiced by several techniques widely reported in the literature. As

below the Nyquist frequency [6], [14]. device dimensions continue to be scaled down, however, capaci-
tance matching becomes increasingly difficult, leading to distor-

. . . . _ tions in the frequency response. In a typical MOS process, edge
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paper is to access the consequent degradation in the frequeadymited by systematic and random errors. The former can
response. be significantly reduced by applying some proper layout tech-

Deterministic analysis, based on the computation of derivaiques [19]. By using two arrays of unit capacitances inter-
tives of the filter transfer function with respect to capacitandeaved in a common centroid geometry layout, for example,
ratios, can be used to estimate the mean and the standard dégresulting capacitance ratio accuracy is typically about 0.5%,
ation of the frequency response error [16], [17]. More accura®@d accuracies better than 0.1% have been experimentally ob-
estimates may be obtained by computer-aided simulations ust@iied for actual integrated circuit implementations [19], [20].
Monte Carlo methods, but these approaches only enable the Hae remaining uncertainty is mainly due to random variations of
signer to estimate the frequency response deviation of a giég manufacturing process and cannot be reduced by improved
design, and consequently do not provide dynamic insight inf@yout rules.
the quantitative influence of parameters such as numerator angkandom errors in capacitance ratios have been modeled as
denominator orders, passband and stopband ripples, edge defitive Gaussian random variables having zero mean and a
quencies, and capacitance ratio tolerances. standard deviation that depends on the nominal ratio value

Inthis paper, the effects of random capacitance ratio errors §28]-[22]. Accordingly, a mathematical model commonly used
formulated as a statistical problem, as in Monte Carlo methodis, computer-aided analysis of SC filters [16] to statistically
but are studied analytically, leading to closed-form expressiodescribe random capacitance ratio errorgis= vy, + ¢,,
for the mean and the standard deviation estimates of the erroninerec,, = vyxex, v are capacitance ratios, and theare
the frequency response. As shown by several illustrative exaumcorrelated zero-mean Gaussian random variables. If the filter
ples, these estimates agree very closely with those provideddogfficients are realized by arrays of unit capacitances, then
Monte Carlo simulations. As a result, the boundaries of the feare rational numbers arg are unit capacitance ratio errors.

sible frequency responses for a given nominal design and capacajternative models have been used with the purpose of ob-
itance ratio tolerances are described mathematically, enabligghing a mathematically tractable problem that can be solved in
yield estimation without any need for computer simulations. Betgsed form. In [23], the model,, = uaxex has been consid-
sides establishing fundamental performance bounds, this pa@yd in the analysis of random coefficient error effects in the fre-
indicates how the derived expressions can be used, along wjtiency response of transversal filters realized by bucket brigade
an algorithm for the optimum design of recursive transfer funge|ay lines, wherey,.. is the maximum coefficient value. The
tions [18], to find the most efficient filter solution in the Sens%odek% = ¢, similar to the digitai filter case except thaJ:

that minimum (not necessarily equal) number of poles and zerg% Gaussian random variables, has been used to investigate co-
and maximum yield can be achieved. Also shown in this pap@fficient inaccuracy effects in SC transversal filters [24]. This
when relatively large stopband attenuation is required, low sefiodel is also adequate for other analog signal-processing tech-
Slthlty can be obtained in both paSSband and Stopband by USiﬂqLies [25], as, for exampie, the interesting design scheme pro-
a recursive SC structure implemented by lower order (typicaljssed in [26], where each transfer function coefficient is given
second-order) nonrecursive [finite-impulse response (FIR)] $§terms of a pulsewidth only. In this case, coefficient inaccura-

sections [12]. . _ cies are caused by rise- and fall-time errors and are, therefore,
This paper is outlined as follows. Mathematical models thdependent of the nominal pulse duration time.

random capacitance ratio errors are discussed in Section Il. Then this paper, we adopt the mode), = Fe, [27], wherey
estimates for the mean and the standard deviation of the efidthe arithmetic mean of the absolute values of the filter coef-
in the frequency response of nonrecursive SC filters are briefyjents, that is7 = >, ||/ L. This takes into account the
reviewed in Section IIl. The statistical analysis of recursive Sfact that usually, as the filter length increases, the spread in the
filters is then developed in Section IV, where the resulting theap weight values and, consequently, in the capacitance ratios,
oretical estimates are compared to their respective Monte Cajle-omes larger. Monte Carlo sensitivity analyses of SC filters
estimates for a variety of transfer functions. Also verified iRaving Gaussian random errors in their coefficients have shown

Section IV is the aCCUI’acy of the imprOVed Capacitance rarégee Section |V) tha:VEk is a very good approximation to the
error model proposed in Section Il. An estimate for the achiefore accurate modej, e

able stopband attenuation is derived in Section V. Frequency re-
sponse boundaries are derived in Section VI for yield evalua-
tion and comparison. Concluding remarks are presented in Sgc-

tion VII. Notation and Preliminary Assumptions

The mean and the standard deviation of a frequency-depen-
dent random variable, say(w), are here denoted as(w) and
or(w), respectively. For simplicity of presentation, the anal-
ysis is developed for low-pass filters; it can be easily extended
to other types of filter specifications. For the transfer function
H(w) of a low-pass filter with ideal components evaluated on
the unit circle, it is assumed that— ¢, < |H(w)| < 1 for

Various error mechanisms affecting MOS capacitances, falt frequencies in the passband, given®y = [0, w,], and
different working conditions, have been studied. Capacitantteat|H (w)| < é, for all frequencies in the stopband, given by
matching precision depends on the fabrication technology afid = [w;, 7], wheres, = 1 — |H(w,)| andé, = |H(ws)|.

Il. CAPACITANCE RATIO ERROR MODELING FOR
STATISTICAL ANALYSIS
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in - IV. STATISTICAL ANALYSIS OF RECURSIVESC HLTERS
o—»| L-Tap SC Delay Line

T T T Equations (4) and (5) provide a quantitative way of evalu-
oS g _E,D_L[gf'*c ating the effects of random capacitance errors on the frequency
- - response of SC nonrecursive filters and indicate that the mean
and the standard deviation g G(w)| are approximately inde-
pendent of the frequency. Distortions in the frequency response
of recursive SC filters, on the other hand, are further aggravated
by the fact that inaccuracies in pole locations are more critical
than in zero locations. In particular, the pole closest to the unit

Fig. 2. Example of a SC realization of (1). Clock phases (not shown) depeRHCl€ €xerts major influence in the region around the passband

on the signs of the corresponding coefficienis edge frequency, augmenting the deviation in the passband and
reducing the attenuation in the stopband. How large the number
IIl. NONRECURSIVESC HLTERS of poles and zeros can be chosen before the frequency response

rt%aches a prohibited level of distortion is one of the answers pro-
Wibed by the following analysis.
The transfer function of a recursive SC filter, evaluated on the

The frequency response of a nonrecursive SC filter of len
L can be written as

L-1 - unit circle, can be written as
Gw) = e W, 1
(@) =Y gre @ Aw)
k=0 Hw) = Blw) (6)
w
It is assumed that each coefficient (or tap weight)
gk = 0,1,2,...,L — 1, is implemented as a ratioWhere
between two capacitances, as in the transversal structure of M-1 , N-1 ,
Fig. 2, or in other realizations using multiplexed op-amps [2]. A(w) = Z are % and B(w)=1- Z bre Ik,
In Fig. 2, the negative coefficients are realized by a proper k=0 k=1
choice of the corresponding switch clock phases (omitted for (1)

generality). Due to random capacitance errors introduced by th

. . §ete,, ande, be random errors representing fluctuations
manufacturing process, the actual transfer function becomesa ok b P g

round the nominal values af, andb;, respectively. Then the

X L—1 ’ poles and the zeros of the actual transfer function will differ
Gw) = Z(gk + €4y )k from the desired poles and zeros, leading to a devialié{w)
k=0 in the frequency response. The actual transfer function can thus
Lil - be written as
=G(w) + eg e N 2 B
k=0 H(w)=H(w)+ AH(w)
wheree,, is the error associated with the nominal value of the _ Alw) + AA(w) @8)
kth capacitance ratify,|. Thus, the deviation in the frequency B(w) + AB(w)
response is where
AG(w) =G(w) — G(w) Ml . N .
L1 AA(w) = Z €, 7% and AB(w) = Z e, eIk,
= g Iwk, ) k=0 k=1
k=0 (9)
In [24], the analysis was carried out by substituting =  After multiplying both the numerator and denominator of (8) by

e in (3), whereey, k= 0,1,2,..., L — 1, were assumed B(u) — AB(w), and neglecting the term& A(w)AB(w) and
uncorrelated Gaussian random variable having zero mean and3(w))?, the deviationA H(w) in the frequency response of
standard deviatiow.. As stated in the previous section, herghe recursive filter can be approximated as

Wwe usee,, = gex, Whereg = Zf;é lgx|/L is the arithmetic | AA(w) — Hw)AB(W)

mean of the capacitance ratios realizing the filter coefficients. AH(w) ~ . (10)
Following the analysis in [24], it can be shown tH&G(w)| B(w)
can be accurately modeled by a Rayleigh random variable Witfihce A A(w) and AB(w) are deviations in the frequency re-
a mean value sponses of transversal filters with lengths and N — 1, re-
ool spectively, then according to (4)
NlAGI(w) = QT Vw 4)
oo VTM op /(N —1)
and a standard deviation paaw) = ——5— and pap(w) = ——F——
11
opaiw) = 2By, (5) e o
wheres, = ao., o, = bo., anda andb are the arithmetic mean
whereos,; = go.. values of the capacitance ratios implementing the coefficients
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of the respective transversal filters, thatds; 224:51 |ax|/M ' ' ' '
andb = S0 o]/ (N — 1), o n{AHW) ) = geer k-

Before turning to the derivation of the mean and standard ¢~ | mIAH@I © ;%gs;ﬁz S

viation of |AH(w)|, we note that\/ and N assume values with Har(w) —
the same order of magnitude, and in most cddes N. Also, 40 M i
the transfer function coefficients are scaled in such a way tt
in the passbanH (w)| ~ 1 and the independent term Bf(w) 9B | -
is equal to one. Thus, for transfer functions with poles suff ST
ciently close to the unit circle, we have> @ (see examples 80 | "o
in Sections IV-A and V-A), and consequently, it follows from M
(11) thatyya gy (w) > pjaa(w), Yw € Q,. As aresult, the ex- -100 | '
pected value of the magnitude of the deviation in the frequen
response of{ (w) for frequencies in the passband is, from (10 -120 : : ' :

0 0.1 0.2 0.3 0.4 0.5
pam|(w) = %l(;}) Normalized Frequency (w/2m)
W
. (a)
oy /(N —1) v O (12) ' ' ' ' 1
= —2|B(w)| w € P OF i s {|AHW)[} : €gp = GkEE K-
L . SUAHW)|}: €y =Tex -o--
For frequencies in the stopband(w)| < 6, < 1, so that -20 - Ideal Izipcr?jt; R
. (@) —
Haa)() M 7
tan(w) ~ B 40 %%
dB B
o / M -60 N -
=%V v eq, (13)
2|B(w)] ol Sy ]
where we have also assumed that M > b6, VN — 1 (see : %
examples in Sections IV-A and V-A). -100 - SRS
Similarly, using (5), we obtain for the standard deviation c . ' . .
|AH(w)| in the passband -1200 o 03 03 o1 05
UlAH|(w) ~ op/@d-m(N-1) VweQ, (14) Normalized Frequency (w/27)
2|B(w)] (b)

and in the stopband

Fig. 3. Theoretical (solid lines) and Monte Carlea("and “o”) estimates for
Oq (4 — 7r)M (a) the mean and (b) standard deviation&f (w)| for the fifth-order elliptic
W Vw e Q. (15) filter of Example 1. Ideal frequency response shows passband and stopband.

JlAH|(w) ~
The above formulas can be used to access the statistical vatri%- . . . .
tion in the particular frequency response of choice, by evaluati ributed capacitance ratio errors with zero mean and unit stan-
' &%rd deviations. = 0.001. The Monte Carlo estimates (16)

them at each frequency of interest. This is shown in Sections ) T
) . nd (17) for, respectively, the mean and the standard deviation
and VI. They are next compared to their respective Monte Car, . X
|AH(w;)| have been compared to their corresponding the-

estimates considering two capacitance ratio error models 4S5 / : ) .
cussed in Section Il and three different filter specifications t%retlcal estimates in (12)~(15). Some illustrative examples are

verify the effectiveness of the theoretical statistical analysis. prgsented nexf[. In ?‘” plots, solid lines correspond to th? theo-
retical expressions in (12)—(15). Results of Monte Carlo simula-

A. Monte Carlo Simulations tions are indicated bys” for the capacitance ratio error model
= e, used in the theoretical analysis and by for the

e realistic model;, = gi¢x. The latter is included with the
purpose of verifying the accuracy of the model used in the the-

Monte Carlo estimates have been obtained by computing,fﬁ(g)r
each given frequenay;, the sample mean

K oretical analysis. The ideal frequency response, in dotted lines,
mlaH (W)} = - > Hy(wi) — H(wi)l  (16) corresponds to a transfer function without coefficient errors and
k=1 is presented with the purpose of showing passband and stopband
and the sample standard deviation frequency regions.
X 1/2 Example 1: As a first example, we consider a fifth-order
1 9 9 (M = N = 6)elliptic SCfilter, having normalized./2x) edge
AAH(wi)l} = | = kzl |AH (wi)]” = (n{|AH (wi)[}) frequencies ab, = 0.2 andw, = 0.3 and ripplegéf,/: 0.109

(17) andé, = 4.68 x 107* [18]. In this casez = 0.0506 and
b= 1.80, giving o, = 5.06 x 10~% ando, = 1.80 x 102, The

of the error in the frequency responsegof= 10000 samples results are displayed in Fig. 3(a) for the mean and in Fig. 3(b)

of SC filters Hy(w), k = 1, 2, ..., K, having Gaussian dis- for the standard deviation, respectively| AfH (w)|. Notice the
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T T T T ) T T T T T T T T T

[ i O o . |
: MHIAH )} : €5, = grer % - C o n{AH@)]} 5 € = grer & -
* i n{|AH (w)]} : €gp = g€k -0 - n{|AH(w)|} : €9y = g€k -0 -

. Ideal Response ---- . 20 . Ideal Response - - - - |
piaH|(w) — _t;g}‘ . wam)(w) —

dB 60 L dB
-80 . |
-100 | 100 L ]
-120 . : L L -120 ! ! ! ! L L L . L

0 o1 02 03 od o5 0 005 01 015 0.2 025 0.3 035 04 045 0.5

Normalized Frequency (w/2r) Normalized Frequency (w/2m)

(a) T T T T T T T T T
T T T T Ok . _

(1 P - . s{|AH(w)|} : €gp = GhEk K-
S{AH (W)} : €g) = grer -*- - © G{JAH@)|}: g, = gex o -
S{lAHW)|} : €5, = ek -o- - -20 |+ Ideal Response - - - - |
Ideal Response -«-- - ojan|(w) —
olan{w) — fs}’* :

dB _SO»W

-80
-80
-100 s
-100 -
: : : _120 1 | 1 L 1 L ] Il 1
120 , , N B 0 005 01 015 02 025 03 035 04 045 05
0 0.1 02 03 04 0.5 Normalized Frequency (w/27)
Normalized Frequency (w/2n) (b)
(b) Fig. 5. Theoretical (solid lines) and Monte Carla{"and “o”) estimates for

. ) o ) (a) the mean and (b) standard deviation)&ff (w)| for the filter of Example
Fig. 4. Theoretical (solid lines) and Monte Carla{"and “o”) estimates for = 3, which considers a transfer function with unequal numerator and denominator
(a) the mean and (b) standard deviation| &fff (w)| for the thirteenth-order orders. Ideal frequency response shows passhand and stopband.
Chebyshev filter of Example 2. Ideal frequency response shows passband and

stopband.

0.200, w, = 0.250, 6, = 0.0488, andé, = 4.47 x 10—*. For

this caseg = 0.111 andb = 1.08, yieldingo, = 1.11 x 10™*

; . ando, = 1.08 x 1073, Again, as shown in Fig. 5(a) and (b),

tween the theory and the Monte Carlo simulations. theoretical results are in excellent agreement with Monte Carlo
Example 2: A thirteenth-order 4 = N = 14) type Il gimyations. Notice that in this example= 9.73, indicating

Chebyshev low-pass transfer function is considered next. The; the assumptiod > @, used in the derivation of (12), is a

main objective of this example is to show the very good accuragysicient but not necessary condition.

of the proposed theoretical analysis, even when applied to filters

with high-order transfer functions and large capacitance spregd. propapility Distribution Function of AH (w)|

The magnitude of the ideal frequency response satisfies the fol- . .
lowing parameterss,, = 0.160,w, = 0.230, 6, = 1.15x 103, Equations (12)—(15), the above examples, and more extensive

ands. — 5.62 x 10-5. Here we hava — 0.0751 andp — 1.73.  Simulations have indicated theh H(w)] is, at each frequency
thus; _ 7 51 x 1025 ando, = 1.73 x 16,3 The resulfs a’re w, a Rayleigh random variable that has a probability density
shown in Fig. 4(a) and (b). Observe that the theoretical estima{HQCt'on given by
agree perfectly with those obtained by Monte Carlo simulations

perfect agreement between both modets @nd “x”) and be-

2
for the modek,, = ges, verifying the proposed statistical anal-  f, \ ;. (z) = { (2z/Mw)) exp{—2?/A(w)}, >0
ysis. The small difference between the curvesdnd “x” is due 0, z <0
to the large capacitance spread in this case. (18)

Example 3: As a final illustrative example, a transfer func-
tion having numerator and denominator polynomials with difvhere
ferent orders{/ = 10 and N = 6) is considered. The nominal ) )
values of the filter coefficients have been obtained by using the Aw) = { oy (N = 1)/|Bw)|*, w e (19)
algorithm described in [18], satisfying the specifications= o2M/|B(w)|?, w € Q.
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Fig. 6. Histogram of AH (w)| evaluated at> = w, = 0.2 for 1000 filter

samples of Example 1. Broken line indicates the Rayleigh probability densitjg. 7. Dotted lines: stopband amplitudes of ideal elliptic filters; solid lines:

function given by (18). upper bounds for stopband amplitudes of direct-form SC elliptic filters having
random capacitance ratio errors.

Fig. 6 displays a histogram fdAH (w)| atw = w, = 0.2 220
obtained with 1000 Monte Carlo analyses of the fifth-order e
liptic filter considered in Example 1. Also shown, in broker
lines, is the probability density function in (18), wif{0.2) =
(1.80 x 10=2)2.(6—1)/|B(0.2)|? = 2.63 x 10~2. Fig. 6 shows
that the theoretical density function (18) provides a good fit ¢
the one estimated by the Monte Carlo computations and will |

used in Section VI to obtain design yield. dB o x
70 -
T e 3
V. ACHIEVABLE STOPBAND ATTENUATION 80 -
o
Inthe ideal caseH (w; )| = &5, but because of the random ca- 290 F k=07 o .
pacitance ratio errors, the actual magnitude at the stopband e k=08 x -
- . . . -100 - 4
frequency| H (w,)| is expected to increase, that j§; (w,) >
6,. In some applications, such as in the design of SC decir -110 : : ' . ' : :
tion filters [11], [28], this may lead to excessive aliasing distor 6 voo8 9 10 o121 M
tion. It is, therefore, of interest to evaluate the expected val Filter Order (M —~ 1)

of | H(ws)|. An upper bound fops 7, (ws) can be obtained by

Wl’iting initially, from the first equality in (8) Fig. 8. Dotted lines: stopband amplitudes of ideal Chebyshev filters; solid

lines: upper bounds for stopband amplitudes of direct-form SC Chebyshev
filters having random capacitance ratio errors.

(@) < [HW) + pjam (w). (20)
order (M — 1) may provide some compensation for the capac-
Now substituting (13) into (20), and using the identitytance ratio error effects, although the price to be paid could
|H(ws)| = 6, yields be quite high for the resulting benefits. For= 0.85, for in-
stance, augmenting the filter order from 8 to 12 leads to an
oo VTM increase of approximately 10 dB in the stopband attenuation,
2|B(w,)| while in the ideal case, shown with a dotted line, this improve-
ment is obtained by increasing the filter order by 1. In some
Expressing, in terms of the other filter parameter®{( 6,, cases, increasing the filter order as an attempt to compensate
ws, andwy,), the upper bound, ...x can be plotted as a func-for the influence of the capacitance ratio errors may even de-
tion of any of these parameters. Approximate expressions exigtase the stopband attenuation, sificg.x is directly propor-
for Butterworth, Chebyshev, and elliptic transfer functions [29ional to M. This is illustrated in Fig. 8 for Chebyshev filters
[30], allowing closed analytical formulas f@t, ... The pro- with ¢, = 0.0559, w,, = 0.17, and transition ratiog = 0.70
cedure is next illustrated for elliptic and Chebyshev filters. andki = 0.80. Observe that in the presence of capacitance ratio
Fig. 7 shows, in solid lines, upper bounds for the stopbamdrors, direct-form SC Chebyshev filters with = 0.80 and
attenuation that would be obtained by direct-form SC elliptiorder greater than 10 should be avoided, since another Cheby-
filters havings, = 0.001, 6, = 0.0559, w, = 0.227, and two shev filter can be found with smaller order that provides approx-
different values of transition rati® = w,/w,: £ = 0.80 and imately the same stopband attenuation. The attenuation of 40
k = 0.85. These curves indicate that an increase in the filteiB, for instance, can be achieved with orders 9 and 14.

N|f{|(ws) S 65 + = 65,max- (21)
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TABLE |
THEORETICAL AND EXPERIMENTAL RESULTS FOR THEELLIPTIC FILTERS OFFIG. 4
k| M-1 a b [ 1B(ws)] 6s | mam(ws) | ”{AH(ws)} | n{lH (ws)l}
x10~8 x10™4 x10~4 x10~4
6 0.4980 | 8.992 | 4.472 822.2 2.611 2.608 9.490
0.80 8 0.2316 | 19.77 | 5.613 34.28 1.097 1.095 1.150
10 0.1200 | 45.98 7.041 1.413 0.5008 0.4954 0.4955
12 0.06431 | 111.2 | 8.839 | 0.05821 0.2325 0.2320 0.2320
6 0.5383 | 8.721 2.257 2188 5.593 5.601 22.30
0.85 8 0.2788 | 19.08 | 2.266 125.9 3.271 3.274 3.462
10 0.1514 | 44.02 2.267 7.244 1.962 1.948 1.949
12 0.08502 | 105.5 2.270 0.4170 1.198 1.202 1.202
TABLE I
THEORETICAL AND EXPERIMENTAL RESULTS FOR THECHEBYSHEV FILTERS OFFIG. 5
k| M-1 [ b [[Bws)l | & | mamlws) | {AH(ws)} | nl|H(ws)[}

x107% | x107¢ x10~4 x10~4
6 0.1667 | 0.4616 | 4.118 125.9 9.488 9.527 126.0
8 0.1344 | 0.6250 3.133 22.39 11.40 11.42 24.23
0.70 10 0.1099 | 0.8751 2.434 3.758 13.27 13.23 13.64
12 0.08959 | 1.265 1.931 0.5957 14.82 14.79 14.80
14 0.07750 | 1.805 1.498 0.1000 17.75 17.78 17.78
6 0.1887 | 0.4750 2.168 446.7 20.41 20.67 446.9
8 0.1507 | 0.6665 1.366 112.2 29.33 29.37 114.7
0.80 10 0.1255 | 0.9442 | 0.8636 27.86 42.72 42.71 49.69
12 0.1089 1.345 | 0.5434 6.998 64.03 63.88 64.16
14 0.09670 | 1.938 | 0.3418 1.758 97.11 97.83 97.83

All results presented in Figs. 7 and 8 have been expenismatch alone. Therefore, using (22), we conclude that the
imentally verified by Monte Carlo simulations, which arestopband attenuation could be corrected to the desired value by

summarized in Tables | and I, whemg{|AH(w;)[} is as
defined in (16), and{|H (w; )|} = Zi‘zl |Hy(ws)|/K. Notice by a factor of approximately 64, that is, =

reducing the standard deviation of the capacitance ratio errors

0.001/64 =

the very close agreement between the theoretical estimatgs x 10~°. In fact, the Monte Carlo estimate in this case

mami(ws) and the corresponding Monte Carlo estimatgiveslog,,(n{|H(0.23)|})

—84.0 dB. However, the required

n{|AH(w;)|}. Equally good results, not included in Tables b. is not realizable for SC filters in today’s integrated circuit
and Il, have been obtained for the standard deviation estimateshnology, whereas in digital filters this figure could be easily
achieved by implementing each filter coefficient with approx-
imately 16 bits. Alternatively, the performance of direct-form

o|am|(ws) and<{|AH (w;)|}.

A. An Estimate for the Stopband Attenuation

for a fixed transition ratid:, the value of; decreases to a point
whered; max ~ pam|(ws)], which can then be used as ar]3

estimate for the expected stopband attenuation, i.e.,

oo VM

i) (ws) = pjam)(ws) =

with M = 14, 0. = 0.001, @ = 0.0751, §; = 5.62 x 1072,
andw, = 0.23, we haveu (0.23) = 2.29 x 107> > §,.

2| B(ws)|

(22)

SC filters can be improved in the stopband, as well as in the
Tables | and Il also show that (21) gives a tighpassband, if one considers transfer functions With# N, as
upper bound for the actual stopband attenuation, sing@own next.
8o max = 6& + 1jam|(ws) is very close to the Monte Carlo
estimaten{| H(w.)|}. Observe that as the filter order increases,

VI. OPTIMUM DESIGN AND YIELD CONSIDERATIONS

For a large class of sampled-data filters, such as the classical
utterworth, Chebyshev, and elliptic filters, considered in the

previous section, the numerator and denominator polynomials
have the same order, that & = N. There are some design

procedures, however, based on optimized positioning of poles

and zeros, that lead to polynomials with unequal orders [18]. As
In such case, the stopband attenuation decreases 64B(as shown next, they also offer the possibility of choosing numer-
0,/a) doubles. Returning to the Chebyshev filter of Example 2tor and denominator orders in such a way that a small deviation

is obtained in the frequency response.
Usually, the frequency response deviation in the passband in-

Thus, according to (22p|ﬁ|(0.23) ~ 2.29 x 1072, showing creases as the denominator order increases, as indicated by (12)
that instead of the desired stopband attenuation of 85 dB acared (14), sinceV increases anfB(w)| decreases for € 2,

would obtain approximately 52.8 dB in an actual SC impleébecause the distance from the poles to the unit circle in the pass-
mentation. This is a reduction of 32.2 dB due to capacitanband is less thaone.Exceptions may occur for wide-band fil-
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Fig. 9. Passband sensitivity characteristics of direct-form recursive SC filterswyith 0.2, w, = 0.3, 6, = 0.1087, andé, < 0.001.(a) M =5, N =7,
(b)M=6,N=6;(c)M =7,N=5;(d)M =9, N = 3. Dotted lines: ideal frequency response; solid lines: boundary cufesands.(-).

ters. In this case, some inner poles of the classical elliptic dpr all w. On the other hand, using the probability density func-

proximation are so far from the unit circle that they can bion given by (18), the probability that\ H (w)| attains values

moved to the origin, almost without modifying the filter fre-within a certain interval can be readily computed. In particular

quency response, resulting in transfer functions viNth< M.

In [18], the transfer function sensitivities of digital filters have ro| am (@)

been computed and compared for several value§ @nd A/ ~ P{|AH(w)| < rojap(w)} = / fiam)(z) dx

for a given specification. However, only the peak of the worst 0 )

case sensitivities for the poles closest to the unit circle have =l—exp{(n/d-1)"} (24)

been computed. A more comprehensive comparison is provided

below for SC filters. wherer is a real positive number. Since for= 5, the above
probability is equal to 0.995, it follows that with high probability

A. Boundary Curves for the Feasible Frequency Responses

, _ Be(w) < [H(w)] < Bu(w) (25)
From (8), the following bounds can be written for the actual
transfer function
where
|H(w)| — |AH(w)| < [H(w)| < [Hw)|+|AH (W) (23) Be(w) = [H(w)| = 501am)(w) (26)
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TABLE Il
FREQUENCY RESPONSEDEVIATION IN THE STOPBAND OFFILTERS WITHw, = 0.2,w,; = 0.3, 6, = 0.1087, AND 4, < 0.001

M-1[N-1] a b 1Bl b | mam(s) [ {AHw)} [ n{H @)}

x10™* | x107° x107% %1071

4 6 0.03152 | 2.904 | 3.239 | 4.677 1.929 1.957 4.898

5 5 0.05060 | 1.804 | 2.309 | 4.677 4.757 4.628 4.732

6 4 0.08275 | 1.128 | 1.652 | 4.571 11.74 11.35 5.754

8 2 0.13790 | 0.6508 | 1.103 8.222 33.24 32.10 11.48
and quire five unit delays, while the least sensitive one would require
eight unit delays to implement the forward path coefficients, as
Bu(w) = [H(W)| + 5012w (w). (27) indicated in Fig. 10(a). Alternatively, since in the latter case the

the lower a%der of the numerator is four times the order of the denomi-

Equations (26) and (27) determine, respectively, e d-ord lis with al identical di
upper boundary curves that enclose the feasible frequency'?@ior' ve second-order FIR SC cells with aimost identical di-

sponses. Fap in Q,,, for instance, (14) can be combined WitHect-form topologies can be used: four cascaded cells in the for-

. pl L} . . .
(26) and (27) to define the boundary responses in the passba\’ﬁ%r.d path and one c_eII in the feedback pa’gh, as illustrated in
In view of the accuracy of the theoretical analysis verified if!9- 10(b)- The resulting structure shows a high degree of mod-
the previous sections, these boundaries provide quick and r4I2MY ang, hencel,lls attlr)ac_uvelforVLSIdlrEplemenltatmnl. Mlore- J
able yield evaluation at any particular frequency of interest, folye", €ach FIR cell can be implemented by a single mu tiplexe
specification window of acceptance defined in the frequency fgR-amp [3], [12]. 1t shoglld.also b,e observgd th‘,"‘t this structurg
sponse. The proportion of the feasible frequency responses t the passb_and_ sensitivity of Fig. 9(d_), since its poles are still
pass this specification window test is the most commonly undérl'_r]ple_mgnted in direct forr_n_, as sh_own in F'g' 10(b_)' Par_t|cular
stood meaning of design (or parametric) yield [31]. For detailédreuit diagrams and sp_ecmc practical design considerations are
treatment and formal definition of yield evaluation and estim&€Y0nd the scope of this paper and can be found elsewhere [12].
tion, from the design stage to the integrated circuit productionA linear Phase FIR f|lter satisfying th? above specn‘|cat|on§
cycle through final test, see, e.g., [17] and [32]. The followin 0l_JId require a delay line at least 21 units long. In some appli-
example illustrates the procedure of finding an optimum desi

tions, where it is sufficient to approximate linear phase over a
so that yield is maximized by comparing the boundary curv@&ction of the passband only [33], properly designed recursive

obtained for each filter. SC filtgrs may replace with advantages a linear pha;e FIR SC
filter. Fig. 11 shows the group delays obtained for the filters con-
B. lllustrative Example and Discussion sidered in the above example. It can be observed that the filter

havingd! = 9, N = 3 (in solid line) has an approximately con-
stant group delay in most of the passband, due to the fact that
it has only two poles, which are not as close to the unit circle
as the ones of the other filters. This comparative study suggests
that when exactly linear phase is not necessary, it may be more
grficient to implement a direct-form recursive SC filter with a
reduced number of poles than a linear phase FIR SC filter.

Fig. 9 shows the boundary curvgg-) ands,(-) in the pass-
band of four different designs: (&Y = 5, N = 7; (b) M = 6,
N=6,c)M =7,N =5and ()M =9, N = 3. In
all casesg. = 0.001, w, = 0.2, w, = 0.3, 6, = 0.1087
(passband ripple of 1 dB), ant] = 0.001 (stopband attenu-
ation of 60 dB) [18]. Each plot displays three curves: the ide

frequency response in dotted lines and the boundary curves N\ ink can also be established between the analysis pro-

solid lines. Note that the decreasevfeduces the sensitivity in sed in this paper and capacitance sizing so that capacitance
the passbhand, as expected. At the passband edge frequencth r pap P g P

T e i atching and noise can be optimized. Once the unit capacitance
?c;(ratrl:rl]g Iﬁf{ﬂi)%(eor'?l"_tig'gﬁ;;)é\;ngUj{fﬁ' (((3)'.2F)i . 3(8)2]3 id ratio tolerances. is obtained for a certain performance in the
jiap(0.2) = 3.674 Xplo_g ando o 0 ;) _ 1 821 9 16_3 passband, through (26) and (27), and in the stopband, through
foer'féle Iéast sénsitive filteri — Elfljf\} _ 3 Fig. 9(d)] HOV\;- (22), then the unit capacitor size can be defined according to the

ever, the necessary increase\to maintain high stopband at- uncertainty parameters specified by the process of fabrication.

tenuation tends to increase the frequency response deviatioCPnnsequently’ all other capacitor sizes, and noise generated by

the stopband, as indicated in (13) and (15). Moreoi@fw)| em, can be det_ermmed by applying the correspondlng_ scaling
. factor. There exists a tradeoff, therefore, that determines an
decreases in the stopband as the number of poles decreases ;
. A . uppér bound for numerator and denominator orders, and a
since in this example the distance from most poles to the u

. . . o P wer bound for capacitor sizes, in the benefit of low sensitivity
circle region corresponding to stopband frequencies is greater

thanone. This is indicated by B(w,)| in Table Ill, asN de- and noise. Increasing capacitor dimensions, on the other hand,

creases from 7 to 3. Nevertheless, high stopband attenuation%lgr? leads to higher power consumption, since the operational

be achieved in all cases of the example. For the ddse- 9, amplifiers will have to drive larger capacitive loads.

N = 3, the achievable stopband attenuation is expected to be, VIL R
from (21), about 59 dB. . CONCLUDING REMARKS

The price for achieving the lowest passband sensitivity is aThis paper considered the effects of random capacitance ratio
longer delay line, since the fifth-order elliptic filter would re-errors in the frequency response of direct-form recursive SC
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Fig. 10. Two realizations of the least sensitive filter in Fig. 9(d). (a) Using two delay lines, as in Fig. 1(b). (b) Using second-order SC FIR salbuitibey
blocks.

20 " ' in the ideal case an arbitrarily large stopband attenuation can
be achieved by simply augmenting the filter order, in a more

ngjng — realistic situation, due to random capacitance ratio errors, an in-

15 M:g"rtg T crease in the filter order may even lead to a decrease in the stop-

band attenuation.

The obtained probability density function of the error in
the frequency response was used to evaluate the design yield.
Through an illustrative example, it was shown how this can be
incorporated into an efficient algorithm that considers transfer
functions with equal or unequal numerator and denominator
orders to design direct form recursive SC filters that simulta-
neously achieve low passband sensitivity and large stopband

Group Delay (Samples)
=

(3]
T

0 . . . attenuation.
0 0.05 0.1 0.15 0.2 This paper does not intend to suggest the recursive di-
Normalized Frequency rect-form structure as a solution for the general SC filter

design problem. However, by a judicious evaluation of the
revealed quantitative tradeoffs, allied to a simplicity of design
and layout implementation, this fundamental class of filters
filters, an issue of increasing importance in view of the tren@@n be considered as an alternative viable solution, and its
toward equipment miniaturization and consequent reductiondfectiveness can be maintained relative to more complex filter
process dimensions into the deep submicrometer range. Ast@ctures in some interesting applications. Such is the essential
result of the statistical analysis, closed-form expressions for thgn of this paper.

mean and the standard deviation of the error in the frequency reajthough the main concern was with respect to SC filters, the
sponse were obtained. Extensive Monte Carlo simulations wefigoroach advanced here can be applied to any filter technique

carried out to verify the main theoretical results and the modglwhich coefficient errors have a Gaussian distribution, such as
used for random capacitance ratio errors. those considered in Section 1.

An estimate for the stopband attenuation was derived, al-
lowing the designer to predict, for instance, the necessary ca-
pacitance ratio tolerance for a given filter to attain a specified , .

band attenuation. Several such estimates were presented f%} T. Enomoto, T. Ishihara, and M. Yasumoto, “Integrated tapped MOS
stopband attenuation. Sev Ll were p ; analogue delay line using switched-capacitor technicEkegtron. Lett,
elliptic and Chebyshev filters, showing, in particular, that while vol. 18, pp. 193-194, Mar. 1982.

Fig. 11. Group delay responses of the filters in Fig. 9.
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