Aula Prática #1 – Emissor Comum e Cascode – Roteiro com Dicas para as Simulações

Ao desenhar o circuito, use biblioteca EBIPOLAR.OLB localizada em um caminho do tipo "ORCAD_10.5\TOOLS\CAPTURE\LIBRARY\PSPICE"

Preste atenção aos seguintes perfis de simulação, que serão empregados preferencialmente sempre sobre o mesmo circuito desenhado no Capture:

1. BIAS:

Basta incluir a biblioteca EBIPOLAR.LIB, que está localizada em um caminho do tipo "ORCAD_10.5\TOOLS\PSPICE\LIBRARY" e executar a simulação.

Verifique as tensões e correntes de polarização solicitadas no enunciado da experiência.

Se I_{CQ2} estiver mais do que 5% acima do valor desejado, aumente R_1 . Se I_{CQ2} estiver mais do que 5% abaixo do valor esperado, reduza R_1 . Use combinações de valores comerciais.

GRÁFICO #1: Imprima o gráfico com as tensões e correntes obtidas após este ajuste.

2. TRANSIENT:

Coloque uma ponteira de prova sobre R_L.

Com uma fonte VSIN de 1 kHz e amplitude 1 mV, execute simulação do tipo "Transient" até 10 ms. Use passo máximo (MAXSTEPSIZE) igual a 10 us. Observe o ganho do circuito.

Depois, aumente a amplitude da fonte VSIN para um valor próximo de 25 mV, até que ocorra a saturação ou o corte de Q_1 (estas condições aparecem na forma de onda vista sobre R_L). Meça então v_{opmax} .

GRÁFICO #2: Imprima o gráfico com a forma de onda sobre a qual v_{opmax} foi medido.

3. AC SWEEP:

Clique duas vezes sobre a fonte VSIN. Uma lista das propriedades de VSIN será mostrada na tela. Configure o valor da propriedade "AC" para "1".

Dentro do perfil de simulação no tipo "AC Sweep", configure o início de simulação para 0.1 Hz, o final para 1 meg (1 MHz) e o número de pontos por década para 10.

a) Mantendo uma ponteira de prova sobre R_L, meça o ganho do circuito na frequência $f_0 = 1$ kHz. Usando a função dB(.), visualize o gráfico de |A(f)| em decibéis. Anote as freqüências f_L e f_H para as quais o ganho do circuito corresponde a |A(f_0)| menos 3 dB.

GRÁFICO #3: Imprima um só gráfico com marcações indicando $|A(f_0)|$, $f_L e f_H$.

b) Remova R_s da entrada do circuito. Conecte V_s diretamente a C₁. Repita a simulação "AC Sweep", reconfigurando-a para 100 Hz a 100 kHz. Solicite em "Add Trace" a visualização de "V(VS:+)/I(VS)". Meça o valor de $|Z_{IN}|$ em 1 kHz.

GRÁFICO #4: Imprima o gráfico com uma marcação indicando $|Z_{IN}| > 4$ kohms.

c) Desconecte V_s de C₁ e recoloque R_s conectado a C₁, só que ligando o outro terminal de R₁ à terra. Remova R_L do circuito (ou simplesmente desconecte-o de C₂, ligando-o por exemplo a V_{cc}). Conecte V_s a C₂ (é conveniente usar um *net alias*, disponível sob o ícone "<u>N1</u>" na barra de componentes, para fazer esta conexão sem precisar mover V_s).

Repita a simulação "AC Sweep". Solicite em "Add Trace" a visualização de "V(VS:+)/I(VS)". Meça então o valor de $|Z_{OUT}|$ em 1 kHz. Removendo R_C da associação em paralelo que é $|Z_{OUT}|$, calcule o valor da impedância R_{01} vista para dentro do coletor de Q_1 . Solicite em "Add Trace" a visualização de "V(VS:+)/I(Q1:C)". Meça então diretamente o valor da impedância vista para dentro do coletor de Q_1 (1 kHz) e compare com o resultado do cálculo anterior.

GRÁFICOS #5 e #6: Marcações de $|Z_{OUT}|$ e de R_{01} .

4. DCSWEEP_BF:

DC Sweep / Primary Sweep / Model Parameter / Model Type (NPN) / Model Name (por exemplo BC546B) / Parameter Name (BF) / Faixa: de 100 a 900, com passo 10. Execute a simulação e solicite o traço "IC(Q2)/IB(Q2)". Encontre os valores de BF para os quais você tem h_{FEmin}, h_{FEmax} e h_{FEproj}.

GRÁFICO #7: Gráfico de h_{FE} (ou seja, "IC(Q2)/IB(Q2)") com indicação dos três pontos: h_{FEmin}, h_{FEmax} e h_{FEproj}.

4B. TRAN_BF (Método Opcional):

Transient (0 a 10 ms, passo máximo 10 us) / Parametric Sweep / Model Name (por exemplo BC546B) / Parameter Name (BF) / Faixa: de 100 a 1000, com passo 100. Execute a simulação e solicite o traço "IC(Q2)/IB(Q2)". O eixo horizontal é o tempo. Note que BF varia de um traço para o outro. Encontre os valores de BF para os quais você tem h_{FEmin}, h_{FEmax} e h_{FEproj}.

5. DCSWEEP_VBE_BF:

a) DC Sweep

a1) Primary Sweep / Temperature: de –5 °C até 65 °C, com passo 1 °C

a2) Secondary Sweep / ... / Model Parameter BF: 200 210 310 600 (por exemplo. Os números exemplificam h_{FEmin} , h_{FEmin} + Δ , h_{FEmax} e h_{FEproj} . O número Δ é uma diferença pequena usada só para duplicar a curva com h_{FEmin} .

Execute a simulação e solicite o traço "VB(Q2)-VE(Q2)". Note que o eixo horizontal indica a faixa de temperaturas que foi considerada. Considere a tabela abaixo:

Sensibilidade VBE		Temperatura (Celsius)		
		-5	25	65
hFE	180	718	667	598
	250	719	668	599
	405	720	669	600

Tabela 1. Variação de V_{BEQ2} conforme a variação de T e h_{FE}.

Preencha uma tabela como esta a partir do resultado da sua simulação. Os resultados das células marcadas vão para a tabela do enunciado da aula prática #1.

b) DC Sweep

b1) Primary Sweep / Temperature: de -5 °C até 65 °C, com passo 1 °C b2) Secondary Sweep / ... / Model Parameter BF: 200 210 310 600 (por exemplo)

Execute a simulação e solicite o traço "VB(Q2)-VE(Q2)". Note que o eixo horizontal indica a faixa de temperaturas que foi considerada. Preencha uma tabela semelhante à Tabela 2 e coloque na tabela do enunciado da aula prática o conteúdo das células marcadas.

Sensibilidade ICQ2		Temperatura (Celsius)		
		-5	25	65
hFE	180	0.962	0.990	1.028
	250	0.998	1.026	1.063
	405	1.000	1.060	1.100

Tabela 2. Variação de I_{CQ2} conforme a variação de T e h_{FE}.

Observe que as variações de I_{CQ2} em relação à célula central da Tabela 2 foram de – 6.2% e + 7.2%. Estes valores devem também ser incluídos na coluna "Simulação" do enunciado.

GRÁFICOS #8 e #9: Traços utilizados para o preenchimento das Tabelas 1 e 2.

6. ACSWEEP_VBE_BF

Certifique-se de que a fonte V_s está reconectada ao R_s, e que R_L está conectado à saída do circuito em C₂, conforme era feito até o item 3(a). Coloque uma ponteira de prova sobre a saída do circuito em R_L.

AC Sweep:

- General Settings: eixo logarítmico de 10 Hz até 100 kHz, 20 pontos por década
- Parametric Sweep / Model Param ... BF: 200 210 310 600
- Temperature "Sweep": 5°C (só é possível executar uma temperatura por vez)

Execute a simulação e, fazendo medidas em 1 kHz sobre os gráficos obtidos, preencha a primeira coluna de uma tabela semelhante à Tabela 3:

Tabela 3. Variação do ganho conforme a variação de T e h_{FE}.

Canha		Temperatura (Celsius)		
Ga	nno	-5 25		65
hFE	180	127		
	250	140		
	405	154		

Para preencher as outras duas colunas, você deve repetir a simulação modificando a temperatura para 25 °C e 65 °C. O conteúdo das células marcadas deve ser incluído

na coluna "Simulação" do enunciado.

GRÁFICOS #10, #11 e #12: Traços utilizados para o preenchimento da Tabela 3. Cada coluna demanda um gráfico.

Obs.: a Tabela 3 pode ser preenchida também a partir de medidas realizadas em uma simulação "transiente", com uma fonte de 1 kHz e amplitude bem baixa (1 mV).

7. TRAN_VBE_BF:

Time Domain

- General Settings: TSTOP 10 ms; MAX STEP 10 us
- Parametric Sweep / Model Param ... BF 200 210 310 600
- Temperature "Sweep": 5°C (só é possível executar uma temperatura por vez)

Usando V_s com uma amplitude suficientemente alta (por exemplo 25 mV), preencha a primeira coluna da Tabela 4. Para preencher as outras duas colunas, você deve repetir a simulação modificando a temperatura para 25 °C e 65 °C. O conteúdo das células marcadas deve ser incluído na coluna "Simulação" do enunciado.

Tabela 4. Variação da excursão de sinal na saída conforme a variação de T e h_{FE}.

		Temperatura (Celsius)		
vop	IIIdX	-5 25		65
hFE	180	2.5		
	250	2.7		
	405	2.9		

GRÁFICOS #13, #14 e #15: Traços utilizados para o preenchimento da Tabela 4.

8. TRANSIENT (use o mesmo perfil do item 2)

Modifique algumas conexões para a configuração cascode da Figura 2 do enunciado da aula prática #1. Para V_s, utilize uma fonte senoidal com amplitude alta (cerca de 25 mV) e freqüência 1 kHz. Meça v_{opmax}.

GRÁFICO #16: Imprima o gráfico com a forma de onda sobre a qual v_{opmax} foi medido.

9. AC SWEEP (use o mesmo perfil do item 3, porém estendendo a freqüência máxima a 10 MHz):

Para a configuração cascode, repita os passos explicados nos itens 3(a), 3(b) e 3(c) (não esqueça de verificar que o parâmetro AC da fonte VSIN está com valor 1).

GRÁFICO #17: Imprima um só gráfico com marcações indicando $|A(f_0)|$, $f_L e f_H$. **GRÁFICO #18:** Imprima o gráfico com uma marcação indicando $|Z_{IN}| > 4$ kohms. **GRÁFICOS #19 e #20:** Marcações de $|Z_{OUT}|$ e de R_{01} .

Lembre-se: colocando quatro gráficos por página, as simulações ocuparão cinco páginas. Os diagramas esquemáticos devem ser incluídos ao lado do gráfico sempre que houver modificação em relação ao circuito que gerou o gráfico anterior.