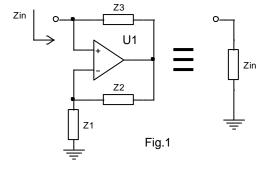
Prática #3 - CONVERSORES DE IMPEDANCIA	GRUPO:	
Data:		
		UFRJ/POLI/DEL - Laboratório de Eletrônica III

PARTE 1: Conversor de Impedância Negativa (NIC)

I) Objetivo


Estudar a realização e aplicação de conversor de impedância negativa (NIC - Negative Impedance Converter)

II) Teoria:

• Implementação

Mostrar que a estrutura da fig.1, utilizando um amplificador operacional (amp-op), implementa um resistor negativo, com um dos terminais aterrado, cujo valor é dado pela expressão:

$$Zin = -(Z_1 \cdot Z_3)/Z_2$$

• Teste de estabilidade em CC

Observar, com um canal do osciloscópio, em acoplamento CC, o comportamento da saída do amp-op U1 (fig.1) quando o terminal livre do resistor negativo é conectado à terra ou deixado em aberto.

A instabilidade em CC é caracterizada pela saturação da saída do amp-op (tensão próxima de VCC, positivo ou negativo).

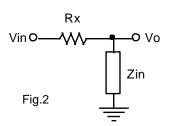
Inverter as entradas (+) e (-) do amp-op e repetir o procedimento.

Ao conectar um resistor Rx em paralelo com o resistor negativo, o circuito pode ficar estável ou instável, dependendo do valor de Rx. Determinar, teoricamente, o valor de Rx em que é necessário inverter as entradas (+) e (-) do amp-op para manter a estabilidade em CC.

OBS.: Caso o circuito oscile em alta frequência, conectar um capacitor pequeno entre a entrada (+) do amp-op e a terra, ou entre a saída do amp-op e a entrada (-).

III) Projeto

Dimensionar o circuito da fig.1 de forma a obter um resistor negativo na faixa: $1k\Omega \le |Zin| \le 10 k\Omega$.

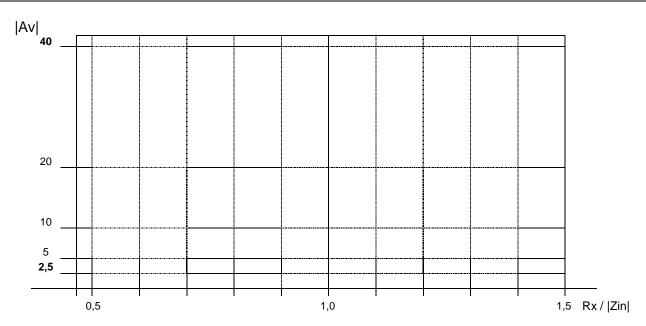

Identificar a configuração estável em curto circuito e a estável em circuito aberto.

Medir, com auxilio de um ohmímetro, a resistência negativa projetada nas duas configurações.

IV) Aplicação: amplificador com divisor resistivo

Para o circuito da fig.2

 Usar o resistor negativo como Zin, nas configurações estável em curto circuito e a estável em circuito aberto, e medir Vo/Vin (em 1 kHz) em função de Rx.



Prática #3 - CONVERSORES DE IMPEDÂNCIA	GRUPO:
Data:	
	UFRJ/POLI/DEL - Laboratório de Eletrônica III
MEMÓRIA D	
PARTE 1: Conversor de Ir	npedância Negativa (NIC)
Impleme	
Mostrar que a estrutura da fig.1 se comporta como um res	sistor negativo, quando 21,22 e 23 são resistores.
	z_{in} z_{in} z_{in} z_{in} z_{in} z_{in} z_{in} z_{in}
Estabilida	de em CC
Determinar, teoricamente, o valor limite de Rx (resistência inverter as entradas (+) e (-) do amp-op para manter a est	
Procedimento para medida indireta do resistor neg	ativo (RN), associando um resistor auxiliar (Raux)
Desenhar o resistor negativo associado a Raux.	Desenvolver uma expressão para o valor de RN
Estável em curto circuito	Estável em circuito aberto

		Con	versor de Imped	ância Negativa (NIC)	
Estável e	m circuito aberto	Unid	Unid Projetado S	Simulado	Medido	OBS
Saída do	Entrada: curto					
amp-op (U1)	Entrada: aberto	V				
Zin	Associando Raux	kΩ				
Estável e	m curto circuito					
Saída do	Entrada: curto	V				
amp-op (U1)	Entrada: aberto	V				
Zin	Associando Raux	kΩ				

			Amplific	ador con	n divisor	resistivo			
	Fase Estável Estável curto aberto		Proje	etado	Simu	ılado	Мес	dido	OBS
Av (V/V)			Fase		Rx (kΩ) Rx (kΩ)		Rx (kΩ)		
			Estável curto	Estável aberto	Estável curto	Estável aberto	Estável curto	Estável aberto	
40									
20									
10									
5									
2,5									
Estimativa de Zin									

Prática #3 - CONVERSORES DE IMPEDÂNCIA	GRUPO:	
Data:		
		UFRJ/POLI/DEL - Laboratório de Eletrônica III

PARTE 2: Conversor de Impedância Generalizado (GIC)

I) Objetivo

Estudar a realização e aplicação de conversor de impedância generalizado (GIC - Generalized Impedance Converter)

II) Teoria:

• Implementação

Mostrar que a estrutura da fig.3, utilizando amp-ops, implementa uma impedância, com um dos terminais aterrado, cujo valor é dado pela expressão:

$$Zin = (Z_1 \cdot Z_3 \cdot Z_5) / (Z_2 \cdot Z_4)$$

Z3 Fig.3 **Z**5

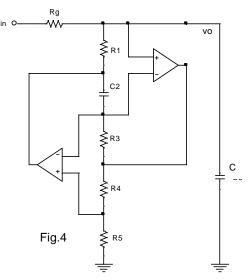
III) Projeto do indutor ativo

Escolhendo-se Z2 como capacitor (C) e as outras impedâncias como resistores iguais (R), o circuito simulará um indutor aterrado, cuja indutância será:

$$L_{eq} = R^2 C$$

- Escolher valores comerciais para R e C de forma a construir um indutor na faixa: 80 ≤ Leq ≤ 120 mH.
- Verificar que a estrutura da Fig. 3 se comporta como um indutor, utilizando este elemento em três aplicações:

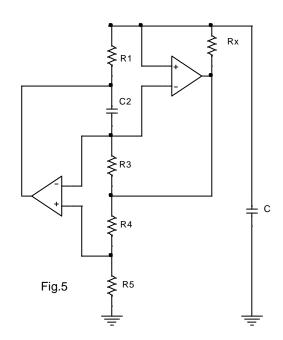
IV) Aplicações:


IV.1) Filtro passa-altas com indutor ativo

Conectar o gerador senoidal (vs) a um resistor (Raux) de 6800 e ligar em série com o indutor (Leq), formando um filtro passa-altas. Mostrar que, na frequência de corte, a reatância indutiva (XLeq) é igual ao resistor (Raux). Medir o valor de Leq, indiretamente, através da frequência de corte do filtro montado.

IV.2) Circuito ressonante paralelo com indutor ativo

- Conectar o indutor ativo (Leq) com Rg e C, conforme a Fig. 4, formando um circuito ressonante paralelo.
- Encontrar a função de transferência (vo/vin) e, comparando o polinòmio do denominador com $\left(s^2 + \frac{w_o}{Q}s + w_o^2\right)$, mostrar que a frequência de ressonância ($w_o = 2\pi\,f_o$) e o fator de qualidade (Q) são dados pelas expressões:


$$w_o = \frac{1}{\sqrt{L_{eq}C}} \qquad Q = R_g \sqrt{\frac{C}{L_{eq}}} \qquad Q = \frac{R_g}{X_{Leq}}$$

- Calcular o valor de C para que a frequência de ressonância fique na faixa de 1 a 3kHz, assumindo o valor projetado para Leq.
- Escolher um valor comercial para Rg de forma que o fator de qualidade Q fique entre 20 e 30.
- Medir o ganho (vo/vin) na frequência de ressonância e estimar o valor do resistor parasita (Rp) associado em paralelo com o circuito ressonante.
- Medir o fator de qualidade (Q= fo/BW), onde BW é a largura de banda compreendida ente as frequências de corte superior e inferior do circuito ressonante. Estimar o valor de Rp a partir do valor de Q medido.
- No laboratório, verifique a resposta do circuito para ondas quadradas de frequências fo, fo/3, fo/5 e 50Hz.
 Comente o resultado.
- Medir o valor de Leg, indiretamente, através da frequência de ressonância.

IV.3) Oscilador LC com o indutor ativo

- Para o circuito da fig.5 com Rx aberto. Verificar se o circuito oscila. A instabilidade pode ser forçada conectando-se um resistor negativo em paralelo com o circuito tanque LC. Mostrar que um resistor Rx conectado como na Fig.5 aparece como Rx em paralelo com o indutor (se R5=R4).
- Conecte uma década resistiva, com valor maior do que 500 kΩ, na posição Rx. Verifique se o circuito continua estável. Reduza o valor de Rx até obter um oscilador senoidal.
- Compare o valor de Rx com a estimativa de Rp obtida.


Data:		UFRJ/POLI/DEL - Laboratório de Eletrônica III
Data:		
Pratica #3 - CONVERSORES DE IMPEDANCIA	GRUPO:	

MEMÓRIA DE CÁLCULO

PARTE 2: Conversor de Impedância Generalizado (GIC)

1) Implementação

Mostrar que a estrutura da fig.3, utilizando amp-ops, implementa uma impedância, com um dos terminais aterrado, cujo valor é dado pela expressão: $Zin = (Z_1 \cdot Z_3 \cdot Z_5) / (Z_2 \cdot Z_4)$

2) Projeto do indutor ativo

Escolhendo-se Z2 como capacitor (C) e as outras impedâncias como resistores iguais (R), o circuito simulará um indutor aterrado, cuja indutância será: Leq=R²C

Escolher valores comerciais para R e C de forma a construir um indutor na faixa: 80 ≤ Leq ≤ 120 mH.

$$C = nF$$

$$R_1 = R_3 = R_4 = R_5 = k\Omega$$

$$Leq = mH$$

3) Filtro passa-altas com indutor ativo

Conectar o gerador senoidal (vs) a um resistor (Raux) de 680Ω e ligar em série com o indutor (Leq), formando um filtro passa-altas. Mostrar que, na frequência de corte, a reatância indutiva (XLeq) é igual ao resistor (Raux).

4) Circuito ressonante paralelo com indutor ativo

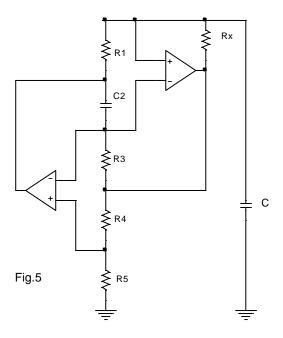
4.1) Mostrar que a frequência de ressonância ($w_o = 2\pi f_o$) e o fator de qualidade (Q) são dados pelas expressões:

$$w_o = \frac{1}{\sqrt{L_{eq}C}} \qquad Q = R_g \sqrt{\frac{C}{L_{eq}}} \qquad Q = \frac{R_g}{X_{Leq}}$$

4.2) Calcular o valor de C para que a frequência de ressonância fique na faixa de 1 a 3kHz, assumindo o valor projetado para Leg. Use capacitor de poliéster metalizado.

$$C = nF$$

$$fo = kHz$$


4.3) Escolher um valor comercial para Rg de forma que o fator de qualidade Q fique entre 20 e 30.

$$Rg = k\Omega$$

$$Q =$$

5) Osccilador LC com o indutor ativo

5.1) Mostrar que um resistor Rx conectado como na Fig.5 aparece como - Rx em paralelo com o indutor (se R5=R4).

OBS) Escala de valores comerciais de componentes disponíveis no laboratório:

Resistores:

Filme metalizado 5%: (1,0-1,2-1,5-1,8-2,2-2,7-3,3-3,9-4,7-5,6-6,8-8,2-10,0) x 100 a 106 Ω

Capacitores:

 $(1,0-2,2-4,7) \times 10^{0} \text{ a } 10^{3} \, \mu\text{F, exceto } 4700 \, \mu\text{F}$ Eletrolíticos:

Poliester metalizado: $(1,0-1,2-1,5-1,8-2,2-2,7-3,3-3,9-4,7-5,6-6,8-8,2-10,0) \times 10^0$ a 10^2 nF

 $(----1,2-1,8-2,2-----3,3-3,9-4,7------) \times 10^2 pF$

 $(1,0-\cdots-1,8-\cdots-2,7-\cdots-4,7-\cdots-1,8-\cdots) \times 10^{0} pF$ Cerâmicos: $(1,0-1,2-1,8-2,2-2,7-3,3-3,9-4,7-5,6-6,8-8,2-10,0) \times 10^{1} pF$

Filtro passa-altas com indutor ativo						
		Projetado	Simulado	Medido	OBS	
vo na banda passante	V					
vo na frequência de corte	V					
Frequência de corte	Hz					
$Leq = R/2\pi f_L$	mH					

Circuito ressonante paralelo com indutor ativo							
			Projetado	Simulado	Medido	OBS	
Capacitor escolhido (C)	nF					
Resistor escolhido (Ro)	kΩ					
Frequência de ressonâ	incia (fo)	Hz					
$Leq = 1/[(2\pi fo)^2]$	C]	mH					
$X_L = 2\pi f_o Leq$		kΩ					
Ganho $(v^0/_{vin})$ na freq fo		V/V					
Freq. de corte super	ior (fн)	Hz					
Freq. de corte inferio	or (fL)	Hz					
BW = fH - fL		Hz					
Fator de qualidade $Q = fo/BW$							
Estimative de De	ganho	kΩ	Х				
Estimativa de Rp	Q	kΩ	Х				

Verificar a resposta do circuito para ondas quadradas de frequências fo, fo/3, fo/5 e 50Hz. Comente o resultado.

		Osccilador LC	com o indutor at	ivo	
		Projetado	Simulado	Medido	OBS
Frequência de oscilação	Hz				
Rx	kΩ				
Amplitude na saída (Vop)	V				

Comentarios / Conclusão

Histórico das revisões:

EletIII_LAB3v2018 - JBM 19/04/2018

Prática #4 mudou para Prática #3 devido à compactação da prática #2 com o mesmo assunto NIC e GIC Foi feita a divisão em PARTE 1 (NIC) e PARTE 2 (GIC)

Foi introduzida a Memória de Cálculo

Foi feita nova redação para melhor explanar os procedimentos e objetivos da prática.