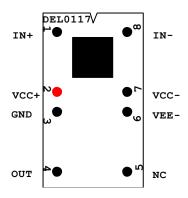
Prática #2 - REALIMENTAÇÃO NEGATIVA

GRUPO:	

UFRJ/POLI/DEL - Laboratório de Eletrônica III

PARTE 1: AMPLIFICADOR ELEMENTAR com ENTRADA DIFERENCIAL

I) Objetivos:


Data:_

Medir as características um amplificador elementar com entrada diferencial.

Medir os parâmetros para modelagem deste amplificador, visando aplicação em estruturas realimentadas.

II) Especificações:

- Caracterizar o amplificador DEL0117, cuja pinagem está indicada na fig.1
- Alimentação simétrica: VCC+= +10 V (pino 2); VCC- =-10 V (pino 7)
 ATENÇÂO para não inverter a alimentação.

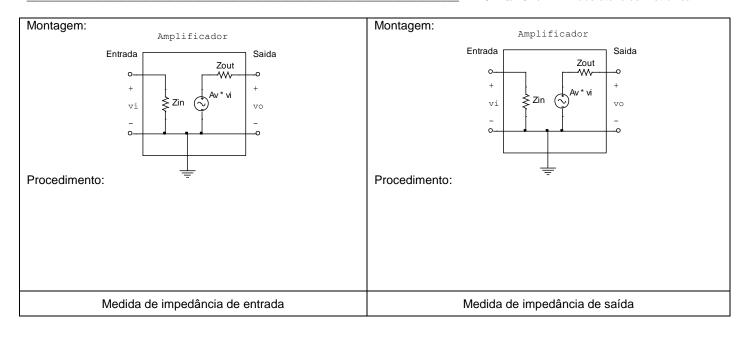
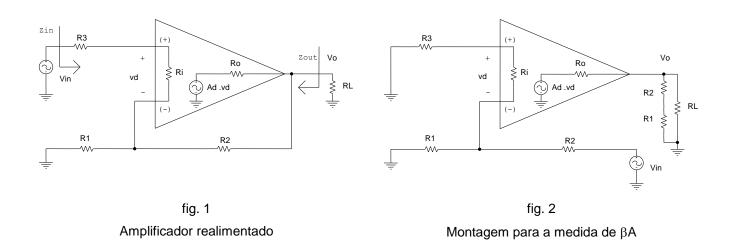



fig.1

III) Medidas

- Tensão de "offset" na saída (medir com tensão nula nas entradas).
- Ganho diferencial (A_d) , impedâncias de entrada (R_i) e de saída (R_o) e frequência de corte superior (f_H).
- Desenhar as montagens utilizadas para medidas de impedância de entrada e saída, explicando o procedimento de medida.



Amplificador Elementar com Entrada Diferencial					
Parâmetros do circuito	Unid	Medido	OBS		
Tensão de "offset" na saída (vin+=vin-=0 V)	(voff)	mV			
Ganho diferencial	(Ad =Vo/Vd)	V/V			
Impedância de entrada	(Ri)	kΩ			
Impedância de saída	(Ro)	kΩ			
Frequência de corte superior	(f _H)	kHz			
Evauraão mávimo do circl no caído com carso	(Vopmax +)	V			
Excursão máxima de sinal na saída, sem carga	(Vopmax -)	V			
Excursão senoidal, máxima, na saída, sem carga	(Vopmax)	V			

PARTE 2: REALIMENTAÇÃO NEGATIVA

I) Objetivos

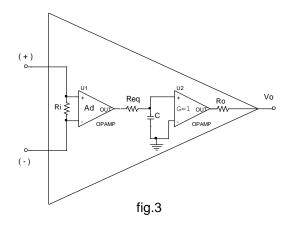
Utilizar um amplificador elementar, com entrada diferencial, como base para a observação dos efeitos da realimentação negativa sobre as características do amplificador básico.

II) Especificações

- Utilizar o amplificador elementar, com entrada diferencial, caracterizado na PARTE 1.
 Considerar R_L=22kΩ.
- Excursão de sinal na saída: Vo ≥ 5,5 V de pico.
- Ganho de tensão ideal (considerando Ad → ∞): Vo/Vin = 11 V/V
- O ganho realimentado real: Vo/Vin ≥ 10,5 V/V
- Usar R₃ = R₁//R₂ para equilibrar o "offset".

III) Teoria

- Assumir para Ri, Ro, Ad e frequência de corte do amplificador elementar, os valores medidos na PARTE 1.
- Determinar os valores de βA mínimo e de β, e a relação entre R1 e R2;
- Estimar, teoricamente, a faixa de valores possíveis de R1 e R2;
- Escolher adequadamente os valores de R1, R2 e R3;
- Desenhar o circuito do amplificador básico;
- Calcular para o amplificador básico: ganho (A), excursão máxima de sinal na saída (Vop), frequência de corte superior (f_H), impedâncias de entrada (Z_i) e de saída (Z_o).
- Calcular para o amplificador realimentado: ganho (A_f), excursão máxima de sinal na saída (Vop), frequência de corte superior (f_{Hf}), impedâncias de entrada (Z_{if}) e de saída (Z_{of}) e, ainda, as impedâncias e (Z_{in}) e (Z_{out}) indicadas na fig.1.


IV) Simulações

• Montagem : Utilizar o modelo da fig.3, suficiente para simular o comportamento do amp op elementar

usado na prática #2 até uma década depois da frequência de corte superior.

Para U_1 e U_2 , utilizar ampops ideais (p.ex. OPAMP / ANALOG do OrCAD).

Atribuir aos parâmetros Ad (U₁), Ri e Ro os valores medidos na prática #2 e ganho unitário (G=1) para U₂. Calcular Req para ajustar, no modelo, a frequência de corte superior (f_H) medida na prática #2. Utilizar C=1nF. Ajustar a excursão máxima de sinal na saída, definindo as tensões de alimentação de U2 com os valores medidos na prática #2 para Vopmax + e Vopmax-.

Simular usando a montagem da fig.3:

Amplificador básico: Ganho (Av), Impedância de entrada (Zi), Impedância de saída (Zo), Frequência de corte superior (f_H) e excursão de sinal máxima na saída (Vopmax);

Amplificador realimentado: Ganho (Avf), Impedâncias de entrada (Zif) e (Zin), Impedâncias de saída (Zof) e (Zout), Frequência de corte superior (f_{Hf}) e Ganho de malha (βA), conforme circuito da fig.2.

V) Medidas

Amplificador básico:

Ganho (Av), Impedância de entrada (Zi), Impedância de saída (Zo) e Frequência de corte superior (f_H);

• Amplificador realimentado:

Ganho (Avf), impedâncias de entrada (Zif) e (Zin), impedâncias de saída (Zof) e (Zout), frequência de corte superior (f_{Hf}), excursão de sinal máxima na saída (Vopmax) e ganho de malha (βA), conforme circuito da fig.2.

UFRJ/POLI/DEL - Laboratório de Eletrônica III

MEMÓRIA DE CÁLCULO

- 1) Especificações:
 - Excursão de sinal na saída:

$$V_{op} \ge \underline{\qquad} V_{pico}$$

$$Av = \frac{v_o}{v_{in}} \ge \underline{\qquad} V/V$$

cursão de sinal na saída:
$$v_{op} \geq \underline{\hspace{1cm}} V_{pico}$$
• Ganho de tensão ideal:
$$Av = \frac{v_o}{v_{in}} \geq \underline{\hspace{1cm}} V_V$$

$$Av|_{Ad \to \infty} = \frac{v_o}{v_{in}} = \underline{\hspace{1cm}} V_V$$

- Usar R₃ = R₁//R₂ para equilibrar o "offset".
- 2) Determinar o tipo de amostragem e de comparação, o tipo de ganho estrutural do amplificador e o tipo de ganho da rede β;

Amostragem : _____ | \Rightarrow | Tipo de ganho do amplificador : _____ : (/) | \Rightarrow | Tipo de ganho da rede β : _____ : (/)

3) Identificar a rede β e determinar as expressões dos parâmetros β , $R_{\beta i}$ e $R_{\beta o}$:

Circuito da rede β:

$$R_{eta i} =$$

$$R_{\beta o} =$$

$$\beta$$
 =

4) Pela especificação de ganho ideal, determinar o valor de β e a relação entre R1 e R2

$$R_2 = R_1$$

5) Pelas especificações de ganho ideal e ganho real, determinar o valor de βA mínimo

$$\beta A \ge$$

6) Determinar o valor mínimo do ganho A (o valor de β já é conhecido)

$$A \ge$$

7) Desenhar o amplificador básico, modelando o amplificador elementar pelo ganho e pelas suas impedâncias de entrada e de saída.

8) Escrever a expressão do ganho do amplificador básico, deixando em função de R1 ou R2

9) Como todos os parâmetros do amp op elementar são conhecidos (medidos na PARTE 1) e o ganho mínimo do amplificador básico já foi determinado, então é possível determinar uma faixa de valores de R1 ou R2 que atendem ao especificado para ganho ideal e ganho real

$$\leq R_2 \leq$$

10) Pela especificação da excursão máxima de sinal na saída, pode-se determinar o valor mínimo de $R_{\beta o}$ e, consequentemente, o valor mínimo de R1 ou R2

$$R_2 \ge$$

11) Escolher adequadamente os valores de R1 e R2 para obter, exatamente, o valor de β desejado.

$$R_1 =$$

$$R_2 =$$

12) Fazer as estimativas teóricas solicitadas (coluna "Projetado" nas tabelas)

AMPLIFICADO	OR BÁSICO:	AMPLIFICADOR R	EALIMENTADO:
Ganho de tensão		Ganho de tensão	
	$A_V = V/V$		$A_{Vf} = V_V$
Excursão de sinal na sa	ída	Excursão de sinal na sa	ída
	$v_{op+} = V$		$v_{op+} = V$
	$v_{op-} = V$		$v_{op-} = V$
Impedância de entrada		Impedância de entrada	
			$Zif = k\Omega$
	$Zi = k\Omega$		$Zif = k\Omega$ $Zin = k\Omega$
Impodância do saída		Impodância do saída	
Impedância de saída		Impedância de saída	
			70f - kO
			$Zof = k\Omega$
	$Zo = k\Omega$		$Zout = k\Omega$
Frequência de corte sup	perior	Frequência de corte sup	perior
	$f_H = kHz$		$f_{Hf} = kHz$

Realimentação tipo: amostragem de tensão (V) – comparação de tensão (V)

Amplificador Básico

Parâmetros do circuito		Unid	Projetado	Simulado	Medido	OBS
Tensão de offset	voff	mV	0	Х		
Ganho de tensão	A _V =Vo/Vin	V/V				
Excursão de sinal na saída	Vop+	V				
	Vop-	V				
Impedância de entrada	Zi	kΩ				
Impedância de saída	Zo	kΩ				
Frequência de corte superior	fн	kHz				

Amplificador Realimentado

Parâmetros do circuito		Unid	Projetado	Simulado	Medido	OBS
Tensão de offset	voff	mV	0	Х		
Ganho de tensão	A _V =Vo/Vin	V/V				
Excursão de sinal na saída	Vop+	V				
	Vop-	V				
Impedância de entrada	Zif	kΩ				
	Zin	kΩ				
Impedância de saída	Zof	kΩ				
	Zout	kΩ				
Frequência de corte superior	f _{Hf}	kHz				
Ganho de malha	βА	V/V				

Comentários / Conclusão

A medida de impedância de entrada é feita colocando-se uma década resistiva ou resistor em série com a entrada. Explique como este procedimento influi no valor da tensão de <i>offset</i> da saída.
Outros comentários: